Speaker:
Leonid Rokhinson (Purdue University)
Host:
Ar. Abanov
Location:
Address:
Mitchell Institute for Fundamental Physics & Astronomy
College Station, Texas 77843
I will start with a brief introduction into the physics of Majorana fermions in semiconductor/superconductor hybrids and description of our experiments where the fractional ac Josephson effect, a hallmark of topological matter, has been observed. I will continue with the discussion of challenges facing the field, namely that in currently pursued hybrid topological superconductors topological states are well localized which makes manipulation and demonstration of non-Abelian statistics extremely challenging.
In the second part I will introduce a new concept based on the ferromagnetic transition in a quantum Hall regime where manipulation of topological defects may be possible via reconfigurable network of domain walls. We pursue two systems, one based on magnetic semiconductor CdTe:Mn, and one based on GaAs high mobility heterostructures, where we developed gate control of quantum Hall ferromagnetic transitions. Such control allows formation of isolated domain walls which consist of counter-propagating edge states of opposite polarization. Apart from interesting spintronics applications, these re-configurable domain walls, coupled to superconducting contacts, can form a new platform where Majorana fermions, parafermions, and, possibly, Fibonacci fermions can be created, braided, manipulated and fused.Copyright © 2023. All rights reserved, Texas A&M University Trademark | Texas A&M University, College Station, Texas 77843