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spin ice 101
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what is spin ice ?
consider e.g.

(Dy3+)2

magnetic ion

9 electrons in 7 orbitals

Dy3+ = [Xe] 4f9

odd number of electrons  
⇒ grounds state of Dy3+ is a Kramers doublet (effective spin-1/2)

(Ti4+)2(O2-)7

expect strong spin-orbit coupling for 4f electrons... 
...need to think about |J| = |L+S| in crystal field
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9 electrons in 7 orbitals

Dy3+ = [Xe] 4f9

odd number of electrons  
⇒ grounds state of Dy3+ is a Kramers doublet (effective spin-1/2)

(Ti4+)2(O2-)7

expect strong spin-orbit coupling for 4f electrons... 
...need to think about |J| = |L+S| in crystal field

large Ising moment  
(10 μB) 

⇒ dipolar interactions 
dominate

what is spin ice ?
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Ho2Ti2O7 
Dy2Ti2O7

magnetic Ho8+ 
or Dy8+ ions live 
on a pyrochlore 

lattice

strong easy-axis anisotropy forces 
spins to point in or out of tetrahedron

7

M.J. Harris et al., Phys. Rev. Lett. 79, 2554 (1997)

“spin ice”

ferromagnetic nearest-neighbour interactions 
select an extensive number of states with two in 

and two out spins per tetrahedron

“r · B = 0”

what makes it spin ice ?
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what’s this got to do with water  ?

J. D. Bernal and R. H. Fowler,  
J. Chem. Phys. 1, 515  (1933)

water ice is composed of hydrogen-bonded 
water molecules, with each water molecule 

forming two hydrogen bonds

L. Pauling,  
J. Am. Chem. Soc. 27, 2680 (1935)

in Ih water ice, O2- form a hexagonal  
crystal lattice, but H+ do not order !

Ω ∼ 1.5N/2  
different proton configurations !
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incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.
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Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).

16 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org416
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neutron scattering on Ho2Ti2O7

T. Fennell et al,  
Science 326, 415 (2009).

 A.P. Ramirez et al.,  
Nature 399, 333 (1999)

heat capacity of Dy2Ti2O7

why should you believe in spin ice ?

direct (thermodynamic) and indirect (scattering) evidence for extensive ground state manifold

Pauling Ice  
entropy

pinch 
point

“r · B = 0”
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why all the fuss ?
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is proposed, based on electrostatic grounds and 
accounting for the position of the H atoms. 

3 
The physical properties of water are compared 

with those of its neighbours in the periodic 
table, particularly with NH a, HF, H 2S, and 
CHaOH. This discussion brings out the fact that 
the unique position of water is due not only to 
its dipole character but even more to the geo-
metrical structure of its molecule, which is the 
simplest one that can form extended four-coor-
dinated networks. 

I t has been found possible to calculate on the 
basis of this model the total energy of ice and 
water, due mainly to the electrostatic potential 
of neighbouring molecules, and the agreement 
with experiment furnishes another proof of the 
correctness of the hypothesis. 

4 
Turning now to ionic solutions, we discuss the 

nature of ionic hydration. A method of estimating 
the degree of hydration from the specific gravity 
of the solutions is developed, and the results 
compared with those calculated theoretically on 
the basis of the molecular model. It is concluded 
that all the strongly polarizing ions H+, Li+, 
Na+, and all divalent and trivalent positive ions 
as well as (OH)- and F- are hydrated, while 
(NH 4)+, Rb+, Cs+, and most negative ions are 
not. The degree of hydration depends mainly on 
the ionic radius and is the same in solutions as in 
crystals: e.g., Be.4H20, Mg.6H20. 

Further it has been shown possible to calculate 
the total heat of solution of any atomic ion. This 
is to a first approximation of the form a+bP 
where P is the mutual potential of the ion and 
a water molecule depending on the radius and 
charge of the ion while a and b depend only on 
the ionic charge. This formula gives excellent 
agreement with experiment. 

The effects of the ions on the water in which 
they are dissolved is discussed, and from a study 
of various properties, particularly viscosity, it is 
concluded that their effect is that of increasing 
or decreasing the intermolecular coherence and 
regularity. The concept of a structural tem-
perature is introduced, which is increased by 
large and decreased by small ions. With respect 

to these properties, H+ and (OH)- ions appear 
quite anomalous, and on this account, as well as 
for their mobility, require a new theory. 

PART II 
5 

The H+ ion must exist in solution as (OHa)+. 
But this makes the anomalous mobility of H+ 
still more difficult to account for. A break with 
current theory is proposed. The hydrogen posi-
tive ion, effectively (OHa)+ moves through water 
under a potential gradient of 1 volt/cm at a 
rate 32.5 X 10-4 cm/sec. at room temperature. 
The corresponding rate for (OH)- is 17.8 X 10-4, 
and for all other ions much less (e.g., K+, 
(NH4)+, Cl-, 6.7 X 10-4). This discrepancy is 
analysed and it is claimed that the excess 
velocities of these ions over 6.7 X 10-4 cm/sec. 
must be due to a mechanism entirely different 
from bodily transport through the solution. It is 
suggested that this different mechanism is the 
transfer by a jump of one proton from one water 
molecule to another when favourable con-
figurations are presented. Such an idea has also 
been proposed by Huckel but quite differently 
developed by him. This transfer is analysed 
quantum-mechanically with simple models, and 
it is shown that the result of the imposed e.m.f. 
will be to cause a bias in the transfers in favour 
of transfer down the field, and that the order of 
magnitude of this bias on the most reasonable 
assumptions as to distances and heights of 
potential barriers is just such as to account for 
the extra (abnormal) velocity of these ions in 
water. The hydrogen isotope H2 will possess 
practically no extra (abnormal) velocity, and 
therefore have a mobility about 1/5 that of HI. 
The explanation given automatically leaves 
unaffected the ordinary theory of the mobilities 
of foreign ions in water. The theory requires the 
degree of organization in the structure of water 
to be considerable, in complete agreement with 
the discussions of Part I. 

INTRODUCTION 

§1. :he abnormal mobilities of H+ and (OH)-
In water 

The present theories of ionic mobility are 
based on a picture of water as a homogeneous 

Downloaded 30 Jul 2010 to 137.222.30.119. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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water ice 
(H20 in Ih cubic form)

spin ice 
(Ho2Ti2O7, DyTi2O7)

H20

H20

H20

r ·B = 0

r ·B = 0

r ·B = 0
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H30+

0H-

H20

“hydronium”

“hydroxil”

13

water ice 
(H20 in Ih cubic form)

spin ice 
(Ho2Ti2O7, DyTi2O7)

r ·B = 0

r ·B = �1

r ·B = +1
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water ice 
(H20 in Ih cubic form)

spin ice 
(Ho2Ti2O7, DyTi2O7)

H30+

H20

“hydronium”

0H-

“hydroxil”

r ·B = 0

r ·B = �1

r ·B = +1
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...discussed in all the most reputable sources of 
scientific information !

spin ice and its monopoles...
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so what don’t we understand ?



what about the third law ?

what is the ground state of spin ice  for T=0 ?
quantum

�
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what is the quantum ground state of spin ice (in equilibrium) ?

measurements of 
heat capacity of 

Dy2Ti2O7 allowing 
up to one week (!) 

for thermalization at 
each temperature..

upturn in heat capacity below 500mK 
⇒ onset of order ?
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what else is new ?
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Quantum Excitations in Quantum Spin Ice
Kate A. Ross,1 Lucile Savary,2 Bruce D. Gaulin,1,3,4 and Leon Balents5,*

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
2Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07, France

3Canadian Institute for Advanced Research, 180 Dundas St. W., Toronto, Ontario, M5G 1Z8, Canada

4Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

5Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106-4030, USA
(Received 22 July 2011; published 3 October 2011)Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations
and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,
giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the
pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian
parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in
Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground
state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears
consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first
quantum spin liquid candidate for which the Hamiltonian is quantitatively known.DOI: 10.1103/PhysRevX.1.021002

Subject Areas: Magnetism, Strongly Correlated MaterialsRare-earth pyrochlores display a diverse set of fascinat-ing physical phenomena [1]. One of the most interestingaspects of these materials from the point of view of funda-mental physics is the strong frustration experienced bycoupled magnetic moments on this lattice. The bestexplored materials exhibiting this frustration are the ‘‘spinice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-ments can be regarded as classical spins with a strong easy-axis (Ising) anisotropy [2,3]. The frustration of these mo-ments results in a remarkable classical spin liquid regimedisplaying Coulombic correlations and emergent ‘‘mag-netic monopole’’ excitations that have now been studiedextensively in theory and experiment [4–6].Strong quantum effects are absent in the spin ice com-pounds, but can be significant in other rare-earth pyro-chlores. In particular, in many materials the low-energyspin dynamics may be reduced to that of an effective spinS ¼ 1=2 moment, with the strongest possible quantumeffects expected. In this case symmetry considerationsreduce the exchange constant phase space of the nearest-neighbor exchange Hamiltonian to a maximum of threedimensionless parameters [7]. The compounds Yb2Ti2O7,Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are ofthis type, and it has recently been argued that the spins inYb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-terials beautiful examples of highly frustrated and stronglyquantum magnets on the pyrochlore lattice. They are alsonearly ideal subjects for detailed experimental investiga-tion, existing as they do in large high-purity single crystals,and with large magnetic moments amenable to neutronscattering studies. Yb2Ti2O7 is particularly appealingbecause its lowest Kramers doublet is extremely wellseparated from the first excited one [11], and a very largesingle-crystal neutron scattering data set is available, al-lowing us to determine the full Hamiltonian quantitatively,as we will show. Although we specialize to Yb2Ti2O7 inthe present article, the theoretical considerations and pa-rameter determination method described here will verygenerally apply to all pyrochlore materials where exchangeinteractions dominate, and whose dynamics can bedescribed by that of a single doublet.Theoretical studies have pointed to the likelihood ofunusual ground states of quantum antiferromagnets onthe pyrochlore lattice [12,13]. Most exciting is the possi-bility of a quantum spin liquid (QSL) state, which avoidsmagnetic ordering and freezing even at absolute zero tem-perature, and whose elementary excitations carry fractionalquantum numbers and are decidedly different from spinwaves [14]. Although one neutron study [15] supportedferromagnetic order in Yb2Ti2O7, intriguingly, the major-ity of neutron scattering measurements have reported alack of magnetic ordering and the absence of spin wavesat low fields in this material [16–18]. In a recent study,sharp spin waves emerged when a magnetic field of 0.5 Torlarger was applied, suggesting that the system transitionedinto a conventional state [18]. The possible identificationof the low-field state with a quantum spin liquid is

*Corresponding author
balents@kitp.ucsb.edu

Published by the American Physical Society under the terms ofthe Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attribution to the author(s) andthe published article’s title, journal citation, and DOI.
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Rods of Neutron Scattering Intensity in Yb2Ti2O7: Compelling Evidence

for Significant Anisotro
pic Exchange in a Magnetic Pyrochlore Oxide

Jordan D. Thompson,
1 Paul A. McClarty,

1 Henrik M. Rønnow,
2 Louis P. Regnault,

3
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Paramagnetic correlations in the magnetic material Yb2Ti2O7 have been investigated via neutron

scattering, revealing a [111] rod of scattering intensity. Assuming interactions between the Yb3þ ions

composed of all symmetry-allowed nearest neighbor exchange interactions and long-range dipolar

interactions, we construct a model Hamiltonian that allows for an excellent description of the neutron

scattering data. Our results provide
compelling evidence for significant

anisotropic exchange int
eractions

in an insulating magnetic pyrochlore oxide. We also compute the real space correlations leading to the

[111] rod of scattering.

DOI: 10.1103/PhysRevL
ett.106.187202

PACS numbers: 75.10.Hk, 05.50.+q
, 75.10.Dg, 75.25."j

In geometrically frustrated magnetic materials there

exists no configuration of magnetic moments that simulta-

neously satisfies all the pairwise magnetic interactions.

Experimental and theoretical research over the past

20 years has shown that frustrated magnetic systems are

prone to exhibit novel and intriguing collective thermody-

namic phenomena [1].

Among frustrated three dimensional systems, the

A2B2O7 pyrochlores have attracted much attention [2].

In these compounds, A is a trivalent rare earth ion (Ho,

Dy, Tb, Gd, Yb) or yttrium (Y) and B is a tetravalent

transition metal ion (Ti, Sn, Mo, Mn). Both A and B reside

on two distinct lattices of corner-sharing tetrahedra.

Theory predicts that classical [3] and quantum [4]

Heisenberg spins on a pyrochlore lattice interacting via

an isotropic antiferromagnetic nearest neighbor exchan
ge

Hamiltonian, HH, fail to develop conventional LRO down

to zero temperature. In real pyrochlore compounds, how-

ever, there generally exists some combination of other

perturbing magnetic interactions (e.g., single-ion anisot-

ropy, dipolar interactions, etc.) beyond HH. Since HH

alone does not produce LRO, the low-temperature mag-

netic correlations of thes
e materials are strongly influ

enced

by the competition between material-specific perturba-

tions. This is the origin of the richness of phenomena

observed in the A2B2O7 pyrochlores [2] including spin

liquid [5], spin glass [6], spin ice [7], and LRO with

persistent low-temperature spin dynamics [8,9]. In this

article, we consider the Yb2Ti2O7 pyrochlore w
hich does

not apparently exhibit any of the aforementioned phe-

nomena and has some unique and unusual features of its

own which have heretofore remained unexplained.

Yb2Ti2O7 has a ferromagnetic character with a Curie-

Weiss temperature, !CW ¼ þ0:65$ 0:15 K [10]. The

Yb3þ % 3 "B magnetic moments predominantly lie per-

pendicular to the local [111] cubic unit cell diagonals,

making this system the only known local [111] XY pyro-

chlorewith a ferromagnetic !CW [2]. Magnetic specific heat

(Cm) measurements reveal a sharp first order transition at

Tc & 240 mK [11], suggesting the onset of LRO. While a

single crystal elastic neutron scattering (NS) study sug-

gested ferromagnetic order below Tc [12], a subsequent

polarized NS study [13] did not confirm such ordering.

Furthermore, powder NS shows no LRO down to 110 mK

[14] and very recent NS on a single crystal sample has not

found any sign of LRO in a broad region of the (hkk)

scattering plane at 30 mK [15]. The Tc & 240 mK transi-

tion seen in Cm has therefore so far not been matched

with the observation of conventional (dipolar magnetic)

LRO. In addition, Mössbauer spectroscopy and muon

spin relaxation ("SR) measurements find a rapid decrease

of the Yb3þ magnetic moments fluctuation rate, #, upon

approaching Tc from above, with "SR revealing a

temperature-independent # (i.e., persistent spin dynamics)

from Tc down to 40 m
K, the lowest temperature considered

[14]. Considering all these results together, one may ask

whether the 240 mK transition inYb2Ti2O7 may be another

rare example of hidden (nondipolar) order [16].
Another

intriguing possibility [14] is that the 240 mK first order

transition takes place bet
ween a ‘‘spin gas’’ (para

magnetic)

state and a spin liquid without any symmetry breaking.

Avery interesting feature o
f the magnetic correlations in

Yb2Ti2O7 found at temperatures Tc < T & 2 K are rods of

NS intensity along the [1
11] directions [9,15]. At

first sight,

PRL 106, 187202 (2011)
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Vindication of Yb2Ti2O7 as a Model Exchange Quantum Spin IceR. Applegate,1 N. R. Hayre,1 R. R. P. Singh,1 T. Lin,2 A. G. R. Day,2,3 and M. J. P. Gingras1,2,4
1Physics Department, University of California at Davis, Davis, California 95616, USA

2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

3Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, J1L 2R1, Canada

4Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario, M5G 1Z8, Canada
(Received 14 March 2012; published 28 August 2012)We use numerical linked-cluster expansions to compute the specific heat CðTÞ and entropy SðTÞ of a

quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined
from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric
data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak
quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in CðTÞ: a
Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a
sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two CðTÞ
features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime
consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with
exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.DOI: 10.1103/PhysRevLett.109.097205 PACS numbers: 75.10.Jm, 74.70.#b, 75.30.Ds, 75.40.Gb

The experimental search for quantum spin liquids(QSLs), magnetic systems disordered by large quantumfluctuations, has remained unabated for over 20 years [1].One direction that is rapidly gathering momentum is thesearch for QSLs among materials that are close relatives tospin ice systems [2], but with additional quantum fluctua-tions, or quantum spin ice (QSI) [3,4].Spin ice materials, such as R2M2O7 (R ¼ Ho, Dy;M ¼ Ti, Sn), have magnetic rare-earth atoms (Ho, Dy) atthe vertices of a pyrochlore lattice of corner-sharing tetra-hedra [2,5]. The combination of large single ion anisotropyand exchange and dipolar interactions lead to an exponen-tially large number of low-energy states characterized bytwo spins pointing in and two spins pointing out on eachtetrahedron [see Fig. 1(a)]. This energetic constraint isequivalent to the Bernal-Fowler ice rules, which endowwater ice with a residual Pauling entropy per proton ofSP % ðkB
2 Þ lnð3=2Þ [6,7]. The spin ice state, with also aresidual entropy Sp [8], is not thermodynamically distinctfrom the paramagnetic phase. Yet, because of the ice rules,it is a strongly correlated state of matter—a classical spinliquid of sorts [1,2].

Several theoretical studies have proposed that introduct-ing quantum fluctuations to such a system, thus turning itinto a QSI [3,4], may lead to an exotic QSL phase ofmatter, one that possibly realizes an emergent quantumelectrodynamics (QED) [9–11]. The search for such aphase is being vigorously pursued in many materials[3,4]. Intense experimental [12–19] and theoretical[14–16,19–24] interest has recently turned to Yb2Ti2O7(YbTO), which is argued to be on the verge of realizing aQSL originating from QSI physics. In fact, the combina-tion of (i) an unexplained transition at Tc % 0:24 K

[12,25], (ii) the controversial evidence for long-range orderbelow Tc [19,26,27], and (iii) the high sensitivity of thelow-temperature (T < 300 mK) behavior to sample prepa-ration conditions [17,18] are all tantalizing evidence thatYbTO has a fragile and perhaps unconventional groundstate. Thus, explaining YbTO is a key milestone in thestudy of QSI in the real material context.The possibility that a QED-like framework [9,10] maybe relevant to describe the physics of the QSI class ofmaterials [23,28] is exciting, as it could lead to the firstunequivocal identification of a QSL with its accompanyingemergent deconfined excitations and gauge boson.Unfortunately, a quantitative theoretical bridge betweenexperiments and QED-like field theory, capable of dealingwith thermodynamic properties of realistic QSI models, is

FIG. 1 (color online). (a) Two neighboring tetrahedra withspins in their two-in–two-out ground state, (b) spinon-antispinonpair, and (c) spinon-antispinon pair separated by a (green) stringof misaligned spins in the pyrochlore lattice.
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In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical 

defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, 

these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which 

can undergo Bose–Einstein condensation through a first-order transition via the Higgs 

mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid 

to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show 

that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are 

suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of 

the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic 

transition. Our results are explained on the basis of a quantum spin-ice model, whose high-

temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground 

state shows a nearly collinear ferromagnetism with gapped spin excitations. 

1 Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan. 2 Quantum Beam Science Directorate, Japan Atomic Energy Agency, 

Tokai, Ibaraki 319-1195, Japan. 3 Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan. 4 Jülich Centre for Neutron Science JCNS-

FRM II, Forschungszentrum Jülich GmbH, Outstation at FRM II, Lichtenbergstrasse 1, D-85747 Garching, Germany. 5 Department of Physics and Center 

for Advanced Study in Theoretical Science, National Taiwan University, Taipei 10607, Taiwan. 6 National Synchrotron Radiation Research Center, Hsinchu 

30076, Taiwan. 7 Department of Physics, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan. 8 Department 

of Physics, Meiji University, Kawasaki 214-8571, Japan. 9 Department of Physics, University of Warwick, Coventry CV4 7AL, UK. Correspondence and 

requests for materials should be addressed to L.J.C. (email: ljchang@mail.ncku.edu.tw) or to S.O. (email: s.onoda@riken.jp). 

Higgs transition from a magnetic Coulomb liquid  

to a ferromagnet in Yb2Ti2O7

Lieh-Jeng Chang1,2, Shigeki Onoda3, Yixi Su4, Ying-Jer Kao5, Ku-Ding Tsuei6, Yukio Yasui7,8,  

Kazuhisa Kakurai2 & Martin Richard Lees9

ARTICLE

Received 4 Apr 2014 | Accepted 12 Aug 2014 | Published 18 Sep 2014

Low-energy electrodynamics of novel spin

excitations in the quantum spin ice Yb2Ti2O7
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In condensed matter systems, formation of long-range order (LRO) is often accompanied by

new excitations. However, in many geometrically frustrated magnetic systems, conventional

LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to

ask is then what is the nature of the excitations in this highly correlated state without broken

symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose

properties reflect certain aspects of the anomalous state without LRO. Here we report a THz

spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a o0014

directed magnetic field. At large positive fields, both right- and left-handed magnon and two-

magnon-like excitations are observed. The g-factors of these excitations are dramatically

enhanced in the low-field limit, showing a crossover of these states into features consistent

with the quantum string-like excitations proposed to exist in quantum spin ice in small

o0014 fields.
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Quantum Excitations in Quantum Spin Ice
Kate A. Ross,1 Lucile Savary,2 Bruce D. Gaulin,1,3,4 and Leon Balents5,*

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
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3Canadian Institute for Advanced Research, 180 Dundas St. W., Toronto, Ontario, M5G 1Z8, Canada

4Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

5Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106-4030, USA
(Received 22 July 2011; published 3 October 2011)Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations
and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,
giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the
pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian
parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in
Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground
state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears
consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first
quantum spin liquid candidate for which the Hamiltonian is quantitatively known.DOI: 10.1103/PhysRevX.1.021002

Subject Areas: Magnetism, Strongly Correlated MaterialsRare-earth pyrochlores display a diverse set of fascinat-ing physical phenomena [1]. One of the most interestingaspects of these materials from the point of view of funda-mental physics is the strong frustration experienced bycoupled magnetic moments on this lattice. The bestexplored materials exhibiting this frustration are the ‘‘spinice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-ments can be regarded as classical spins with a strong easy-axis (Ising) anisotropy [2,3]. The frustration of these mo-ments results in a remarkable classical spin liquid regimedisplaying Coulombic correlations and emergent ‘‘mag-netic monopole’’ excitations that have now been studiedextensively in theory and experiment [4–6].Strong quantum effects are absent in the spin ice com-pounds, but can be significant in other rare-earth pyro-chlores. In particular, in many materials the low-energyspin dynamics may be reduced to that of an effective spinS ¼ 1=2 moment, with the strongest possible quantumeffects expected. In this case symmetry considerationsreduce the exchange constant phase space of the nearest-neighbor exchange Hamiltonian to a maximum of threedimensionless parameters [7]. The compounds Yb2Ti2O7,Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are ofthis type, and it has recently been argued that the spins inYb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-terials beautiful examples of highly frustrated and stronglyquantum magnets on the pyrochlore lattice. They are alsonearly ideal subjects for detailed experimental investiga-tion, existing as they do in large high-purity single crystals,and with large magnetic moments amenable to neutronscattering studies. Yb2Ti2O7 is particularly appealingbecause its lowest Kramers doublet is extremely wellseparated from the first excited one [11], and a very largesingle-crystal neutron scattering data set is available, al-lowing us to determine the full Hamiltonian quantitatively,as we will show. Although we specialize to Yb2Ti2O7 inthe present article, the theoretical considerations and pa-rameter determination method described here will verygenerally apply to all pyrochlore materials where exchangeinteractions dominate, and whose dynamics can bedescribed by that of a single doublet.Theoretical studies have pointed to the likelihood ofunusual ground states of quantum antiferromagnets onthe pyrochlore lattice [12,13]. Most exciting is the possi-bility of a quantum spin liquid (QSL) state, which avoidsmagnetic ordering and freezing even at absolute zero tem-perature, and whose elementary excitations carry fractionalquantum numbers and are decidedly different from spinwaves [14]. Although one neutron study [15] supportedferromagnetic order in Yb2Ti2O7, intriguingly, the major-ity of neutron scattering measurements have reported alack of magnetic ordering and the absence of spin wavesat low fields in this material [16–18]. In a recent study,sharp spin waves emerged when a magnetic field of 0.5 Torlarger was applied, suggesting that the system transitionedinto a conventional state [18]. The possible identificationof the low-field state with a quantum spin liquid is
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Paramagnetic correlations in the magnetic material Yb2Ti2O7 have been investigated via neutron

scattering, revealing a [111] rod of scattering intensity. Assuming interactions between the Yb3þ ions

composed of all symmetry-allowed nearest neighbor exchange interactions and long-range dipolar

interactions, we construct a model Hamiltonian that allows for an excellent description of the neutron

scattering data. Our results provide
compelling evidence for significant

anisotropic exchange int
eractions

in an insulating magnetic pyrochlore oxide. We also compute the real space correlations leading to the

[111] rod of scattering.

DOI: 10.1103/PhysRevL
ett.106.187202

PACS numbers: 75.10.Hk, 05.50.+q
, 75.10.Dg, 75.25."j

In geometrically frustrated magnetic materials there

exists no configuration of magnetic moments that simulta-

neously satisfies all the pairwise magnetic interactions.

Experimental and theoretical research over the past

20 years has shown that frustrated magnetic systems are

prone to exhibit novel and intriguing collective thermody-

namic phenomena [1].

Among frustrated three dimensional systems, the

A2B2O7 pyrochlores have attracted much attention [2].

In these compounds, A is a trivalent rare earth ion (Ho,

Dy, Tb, Gd, Yb) or yttrium (Y) and B is a tetravalent

transition metal ion (Ti, Sn, Mo, Mn). Both A and B reside

on two distinct lattices of corner-sharing tetrahedra.

Theory predicts that classical [3] and quantum [4]

Heisenberg spins on a pyrochlore lattice interacting via

an isotropic antiferromagnetic nearest neighbor exchan
ge

Hamiltonian, HH, fail to develop conventional LRO down

to zero temperature. In real pyrochlore compounds, how-

ever, there generally exists some combination of other

perturbing magnetic interactions (e.g., single-ion anisot-

ropy, dipolar interactions, etc.) beyond HH. Since HH

alone does not produce LRO, the low-temperature mag-

netic correlations of thes
e materials are strongly influ

enced

by the competition between material-specific perturba-

tions. This is the origin of the richness of phenomena

observed in the A2B2O7 pyrochlores [2] including spin

liquid [5], spin glass [6], spin ice [7], and LRO with

persistent low-temperature spin dynamics [8,9]. In this

article, we consider the Yb2Ti2O7 pyrochlore w
hich does

not apparently exhibit any of the aforementioned phe-

nomena and has some unique and unusual features of its

own which have heretofore remained unexplained.

Yb2Ti2O7 has a ferromagnetic character with a Curie-

Weiss temperature, !CW ¼ þ0:65$ 0:15 K [10]. The

Yb3þ % 3 "B magnetic moments predominantly lie per-

pendicular to the local [111] cubic unit cell diagonals,

making this system the only known local [111] XY pyro-

chlorewith a ferromagnetic !CW [2]. Magnetic specific heat

(Cm) measurements reveal a sharp first order transition at

Tc & 240 mK [11], suggesting the onset of LRO. While a

single crystal elastic neutron scattering (NS) study sug-

gested ferromagnetic order below Tc [12], a subsequent

polarized NS study [13] did not confirm such ordering.

Furthermore, powder NS shows no LRO down to 110 mK

[14] and very recent NS on a single crystal sample has not

found any sign of LRO in a broad region of the (hkk)

scattering plane at 30 mK [15]. The Tc & 240 mK transi-

tion seen in Cm has therefore so far not been matched

with the observation of conventional (dipolar magnetic)

LRO. In addition, Mössbauer spectroscopy and muon

spin relaxation ("SR) measurements find a rapid decrease

of the Yb3þ magnetic moments fluctuation rate, #, upon

approaching Tc from above, with "SR revealing a

temperature-independent # (i.e., persistent spin dynamics)

from Tc down to 40 m
K, the lowest temperature considered

[14]. Considering all these results together, one may ask

whether the 240 mK transition inYb2Ti2O7 may be another

rare example of hidden (nondipolar) order [16].
Another

intriguing possibility [14] is that the 240 mK first order

transition takes place bet
ween a ‘‘spin gas’’ (para

magnetic)

state and a spin liquid without any symmetry breaking.

Avery interesting feature o
f the magnetic correlations in

Yb2Ti2O7 found at temperatures Tc < T & 2 K are rods of

NS intensity along the [1
11] directions [9,15]. At

first sight,
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(Received 14 March 2012; published 28 August 2012)We use numerical linked-cluster expansions to compute the specific heat CðTÞ and entropy SðTÞ of a

quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined
from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric
data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak
quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in CðTÞ: a
Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a
sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two CðTÞ
features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime
consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with
exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.DOI: 10.1103/PhysRevLett.109.097205 PACS numbers: 75.10.Jm, 74.70.#b, 75.30.Ds, 75.40.Gb

The experimental search for quantum spin liquids(QSLs), magnetic systems disordered by large quantumfluctuations, has remained unabated for over 20 years [1].One direction that is rapidly gathering momentum is thesearch for QSLs among materials that are close relatives tospin ice systems [2], but with additional quantum fluctua-tions, or quantum spin ice (QSI) [3,4].Spin ice materials, such as R2M2O7 (R ¼ Ho, Dy;M ¼ Ti, Sn), have magnetic rare-earth atoms (Ho, Dy) atthe vertices of a pyrochlore lattice of corner-sharing tetra-hedra [2,5]. The combination of large single ion anisotropyand exchange and dipolar interactions lead to an exponen-tially large number of low-energy states characterized bytwo spins pointing in and two spins pointing out on eachtetrahedron [see Fig. 1(a)]. This energetic constraint isequivalent to the Bernal-Fowler ice rules, which endowwater ice with a residual Pauling entropy per proton ofSP % ðkB
2 Þ lnð3=2Þ [6,7]. The spin ice state, with also aresidual entropy Sp [8], is not thermodynamically distinctfrom the paramagnetic phase. Yet, because of the ice rules,it is a strongly correlated state of matter—a classical spinliquid of sorts [1,2].

Several theoretical studies have proposed that introduct-ing quantum fluctuations to such a system, thus turning itinto a QSI [3,4], may lead to an exotic QSL phase ofmatter, one that possibly realizes an emergent quantumelectrodynamics (QED) [9–11]. The search for such aphase is being vigorously pursued in many materials[3,4]. Intense experimental [12–19] and theoretical[14–16,19–24] interest has recently turned to Yb2Ti2O7(YbTO), which is argued to be on the verge of realizing aQSL originating from QSI physics. In fact, the combina-tion of (i) an unexplained transition at Tc % 0:24 K

[12,25], (ii) the controversial evidence for long-range orderbelow Tc [19,26,27], and (iii) the high sensitivity of thelow-temperature (T < 300 mK) behavior to sample prepa-ration conditions [17,18] are all tantalizing evidence thatYbTO has a fragile and perhaps unconventional groundstate. Thus, explaining YbTO is a key milestone in thestudy of QSI in the real material context.The possibility that a QED-like framework [9,10] maybe relevant to describe the physics of the QSI class ofmaterials [23,28] is exciting, as it could lead to the firstunequivocal identification of a QSL with its accompanyingemergent deconfined excitations and gauge boson.Unfortunately, a quantitative theoretical bridge betweenexperiments and QED-like field theory, capable of dealingwith thermodynamic properties of realistic QSI models, is

FIG. 1 (color online). (a) Two neighboring tetrahedra withspins in their two-in–two-out ground state, (b) spinon-antispinonpair, and (c) spinon-antispinon pair separated by a (green) stringof misaligned spins in the pyrochlore lattice.
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In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical 

defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, 

these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which 

can undergo Bose–Einstein condensation through a first-order transition via the Higgs 

mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid 

to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show 

that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are 

suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of 

the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic 

transition. Our results are explained on the basis of a quantum spin-ice model, whose high-

temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground 

state shows a nearly collinear ferromagnetism with gapped spin excitations. 
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In condensed matter systems, formation of long-range order (LRO) is often accompanied by

new excitations. However, in many geometrically frustrated magnetic systems, conventional

LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to

ask is then what is the nature of the excitations in this highly correlated state without broken

symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose

properties reflect certain aspects of the anomalous state without LRO. Here we report a THz

spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a o0014

directed magnetic field. At large positive fields, both right- and left-handed magnon and two-

magnon-like excitations are observed. The g-factors of these excitations are dramatically

enhanced in the low-field limit, showing a crossover of these states into features consistent

with the quantum string-like excitations proposed to exist in quantum spin ice in small

o0014 fields.
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Quantum fluctuations in spin-ice-like Pr2Zr2O7
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Spin ice is a magnetic analog of H2O ice that harbors dense static disorder. Dipolar inter-

actions between classical spins yield a frozen frustrated state with residual configurational

Pauling entropy and emergent magnetic monopolar quasiparticles. Introducing quantum

fluctuations is of great interest as this could melt spin ice and allow coherent propagation of

monopoles. Here, we report experimental evidence for quantum dynamics of magnetic

monopolar quasiparticles in a new class of spin ice based on exchange interactions, Pr2Zr2O7.

Narrow pinch point features in otherwise diffuse elastic neutron scattering reflects adherence

to a divergence-free constraint for disordered spins on long time scales. Magnetic suscept-

ibility and specific heat data correspondingly show exponentially activated behaviors. In sharp

contrast to conventional ice, however, 490% of the neutron scattering is inelastic and devoid

of pinch points furnishing evidence for magnetic monopolar quantum fluctuations.
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but most scattering is inelastic  
- evidence of quantum 
monopole-dynamics ?

Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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Figure 3 | Spin ice correlations and quantum dynamics probed with elastic and inelastic neutron scattering. (a) Inelastic Q-map with energy transfer of
0.25 meV obtained after subtracting the corresponding data at 15 K as background. The broad diffuse scattering pattern carries the symmetry of the crystal
but cannot be associated with phonon scattering, which is concentrated around strong nuclear Bragg peaks at low energies. Instead we associate it with
inelastic magnetic scattering. The fact that the scattering is wave vector dependent further links it to inter-site quantum spin dynamics. (b) Elastic Q-map

with pinch points at (002), (111), and (111). By subtracting 22 K data from 0.1 K data to cancel elastic nuclear scattering processes at Bragg peaks, we obtain
quasi-static spin correlations on the time scale of t¼ !h/dE¼ 2 ps. The black ellipses at (002) in (a) and (b) indicate the full width at half maximum
instrumental resolution. (c) Temperature-dependence of the spin ice correlation length xice (left) and the relaxation rate G (right). The black solid line denotes

1=xice¼ 1=x0þA= expðDw=TÞ with the activation energy fixed at the value of Dw¼ 1.62(3) K. The red solid line shows GðTÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0Þ2þðCkBTÞ2

q
, where

C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
and 2.0 K (open circle) after subtraction of INS data obtained at the same Q but at the elevated temperature of 15 K. A correction to the monitor rate was
applied to account for order contamination in the unfiltered incident beam. The fitting curve and the corresponding background resulting from subtraction of
magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
Supplementary Note 3. The error bars reflect one s.d. counting statistics. When error bars are not visible they are smaller than the symbol size.
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Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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, where

C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
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magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
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Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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, where

C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
and 2.0 K (open circle) after subtraction of INS data obtained at the same Q but at the elevated temperature of 15 K. A correction to the monitor rate was
applied to account for order contamination in the unfiltered incident beam. The fitting curve and the corresponding background resulting from subtraction of
magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
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elastic scattering suggests 
spin-ice correlations

Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
and 2.0 K (open circle) after subtraction of INS data obtained at the same Q but at the elevated temperature of 15 K. A correction to the monitor rate was
applied to account for order contamination in the unfiltered incident beam. The fitting curve and the corresponding background resulting from subtraction of
magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
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Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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Pyrochlore photons: The U„1… spin liquid in a SÄ 1
2 three-dimensional frustrated magnet
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We study the S!1/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis
exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model
has a U(1) gauge symmetry generated by certain local rotations about the z axis in spin space. Upon addition
of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-
sharing octahedra, we can write down the exact ground-state wave function with no further approximations.
Using the properties of the soluble point we show that these models enter the U(1) spin liquid phase, a
fractionalized spin liquid with an emergent U(1) gauge structure. This phase supports gapped Sz!1/2 spinons
carrying the U(1) ‘‘electric’’ gauge charge, a gapped topological point defect or ‘‘magnetic’’ monopole, and a
gapless ‘‘photon,’’ which in spin language is a gapless, linearly dispersing Sz!0 collective mode. There are
power-law spin correlations with a nontrivial angular dependence, as well as U(1) topological order. This state
is stable to all zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a
convenient lattice version of electric-magnetic duality, we develop the effective description of the U(1) spin
liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the
universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wave
function. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and
for making contact with experiments.
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I. INTRODUCTION

The search for quantum spin liquid states in frustrated
magnets can be traced back at least as far as the early sug-
gestion of a resonating valence bond state in the triangular
lattice Heisenberg model.1 Almost 15 years later, the sugges-
tion of such a state in the undoped high-Tc cuprates2 set off
an explosion of interest in two-dimensional spin liquids !i.e.,
Mott insulators at half filling with no broken symmetries".
Frustrated Heisenberg models on the square, triangular, and
kagomé lattices have all received significant attention as can-
didate systems for quantum disordered ground states. While
there has been comparatively little theoretical work on quan-
tum spin liquids in three-dimensional frustrated magnets,
materials with magnetic ions on the pyrochlore lattice !Fig.
2" may be good candidates for spin liquids and other exotic
states. To give one example, recent neutron-scattering experi-
ments on ZnCr2O4, a S!3/2 pyrochlore Heisenberg antifer-
romagnet, suggest a nontrivial disordered state3 above a tran-
sition to Néel order accompanied by a lattice distortion4 at
12.5 K.
Meanwhile, much work has been devoted to understand-

ing the properties of possible spin liquid states, independent
of their existence in particular microscopic models. Most of
the proposed spin liquid states support deconfined S!1/2
spinons; such states are fractionalized, in that some of the
elementary excitations carry quantum numbers that are frac-
tions of those allowed in a finite-size system. Fractionalized
states can be precisely characterized by their topological
order,5 which in the simplest scenario is associated with the
topological sectors of an emergent, deconfining Z2 gauge
field.6 The ‘‘vison,’’ a gapped vortexlike excitation that car-
ries the Z2 flux,7 must also be present. While topological

order does not require a liquid ground state and can coexist
with conventional long-range order, we believe it is probably
common in spin liquids and hence in some of the nearby
ordered states. Very recently, many of these ideas have been
put on firmer ground by the emergence of several micro-
scopic models supporting stable fractionalized phases in two
and three dimensions.8–14
Despite these recent theoretical successes, an unambigu-

ous experimental realization of these ideas is still lacking.
Indeed, spin liquid states seem rather rare; is topological or-
der rare as well? For Z2-fractionalized states this question is
difficult to answer, because the gapped visons have no effect
on easily measurable low-energy properties. Clever propos-
als have been made15 and carried out16,17 to directly detect
topological order in the cuprates !with negative results thus
far", but these experiments are difficult and rely on properties
of the phases proximate to a topologically ordered state. Z2
topological order is difficult enough to observe that it is im-
possible to say at present how rare or common it is.
Fortunately it may be possible to shed some light on the

experimental situation. In this paper, we present two models
of three-dimensional S!1/2 frustrated magnets, one on the
pyrochlore lattice, the other on a related network of corner-
sharing octahedra !the links of the cubic lattice, as shown in
Fig. 5". Both these models exhibit a fractionalized phase, the
U(1) spin liquid. This state has an emergent U(1) gauge
structure that gives rise to several remarkable properties:
there is a gapless ‘‘artificial photon’’ excitation, a gapped
spinon carrying ‘‘electric’’ gauge charge, a gapped ‘‘mag-
netic’’ monopole, an emergent 1/r ‘‘Coulomb’’ potential be-
tween pairs of spinons and monopoles, and U(1) topological
order. If this phase exists in a real material, the gapless pho-
ton should have important implications for low-energy ther-
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Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice
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The “spin-ice” state found in the rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7 offers a beautiful
realization of classical magnetostatics, complete with magnetic monopole excitations. It has been suggested
that in “quantum spin-ice” materials, quantum-mechanical tunneling between different ice configurations, could
convert the magnetostatics of spin ice into a quantum spin liquid that realizes a fully dynamical, lattice analogue
of quantum electromagnetism. Here, we explore how such a state might manifest itself in experiment, within
the minimal microscopic model of a such a quantum spin ice. We develop a lattice field theory for this model,
and use this to make explicit predictions for the dynamical structure factor that would be observed in neutron
scattering experiments on a quantum spin ice. We find that “pinch points,” which are the signal feature of a
classical spin ice, fade away as a quantum ice is cooled to its zero-temperature ground state. We also make
explicit predictions for the ghostly, linearly dispersing magnetic excitations which are the “photons” of this
emergent electromagnetism. The predictions of this field theory are shown to be in quantitative agreement with
quantum Monte Carlo simulations at zero temperature.
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I. INTRODUCTION

The idea that a strongly interacting quantum magnet might
support a spin liquid phase that remains disordered even at
zero temperature has fascinated—and frustrated—physicists
ever since the seminal “resonating valence bond” (RVB) paper
of Anderson in 1973.1 Such a phase, it was argued, need
not support the spin waves found in conventional magnets,
but could instead exhibit “spinons” with fractional quantum
numbers. Forty years later, the search for quantum spin liquids
goes on, but with strong grounds for encouragement: a growing
number of quantum magnets have been identified that do not
order down to the lowest temperatures measured, many of
which have low-temperature properties that hint at spinons.2,3

At the same time, the “spin ice” materials Ho2Ti2O7 and
Dy2Ti2O7 have emerged as textbook examples of classical
(i.e., entropy-driven) spin liquids.4–6 These highly frustrated
magnetic insulators show algebraic correlations of spins over
macroscopic distances7–10 and support magnetic monopole
excitations that provide classical analogues to the spinons
envisaged by Anderson.11–17

Recently, the idea of a “quantum spin ice” has also attracted
considerable interest. The family of rare-earth pyrochlores
to which Ho2Ti2O7 and Dy2Ti2O7 belong includes other
systems in which quantum effects play a much more important
role.6 Perhaps the most widely studied system of this type
is Tb2Ti2O7. Like the classical spin ices, the magnetism of
Tb2Ti2O7 is controlled by the competition between strong
Ising anisotropy and dipolar interactions, which are ferro-
magnetic on nearest-neighbour bonds, so it is expected to
be an “ice.” However, in Tb2Ti2O7, anisotropic exchange
interactions also play an important role and endow the spins
with dynamics.18–21 A diffuse, liquidlike structure is observed
in neutron scattering for a wide range of temperatures, with
no conventional magnetic order observed down to 50 mK,
despite the fact that the typical scale of interactions between
spins is closer to 11 K.22,23 Muon spin rotation experiments,

meanwhile, suggest that spins continue to fluctuate down to the
lowest temperatures,24 and the most recent quasielastic neutron
scattering experiments find evidence of power-law spin corre-
lations at 50 mK.25 Taken together, these facts make Tb2Ti2O7
a prime example of a three-dimensional quantum spin liquid.

The magnetism of Yb2Ti2O7 has also proved very inter-
esting, with neutron scattering finding no evidence of order
at temperatures above 210 mK, and evidence for frustrated,
anisotropic exchange interactions favoring significant dynam-
ics within an “icelike” manifold of states.26–30 Comparable
studies of Pr2Sn2O7 suggest that it does not order down
to 500 mK, but with spins continuing to fluctuate.31–33

There is also reason to believe that other Pr metal oxides,
including Pr2Zr2O7, may prove a worthwhile hunting ground
for quantum spin liquids.32–35 And while the dynamics of
the “classical” spin ices Ho2Ti2O7 and Dy2Ti2O7 become
very slow at low temperatures, neither system has ever been
observed to order, despite the fact that the dipolar interactions
present in these systems are expected to favor an ordered
state.36,37 All of this begs the question of how the classical
spin liquid found in spin ice might evolve into a quantum spin
liquid as quantum effects become more important?

In fact, spin ice is just one example of a much broader class
of systems that obey the “ice rules.” First introduced by Bernal
and Fowler in 1933 to describe the correlations of protons in
water ice,38 the ice rules have since found application in models
of frustrated charge order,39,40 proton bonded ferroelectrics41

and dense polymer melts.42 All of these systems possess a local
“two-in, two-out” constraint, which can most conveniently be
written in terms of a zero-divergence condition on a notional
magnetic field:

∇ · B = 0. (1)

In the case of spin ice, B has the physical meaning of the
local magnetization of the system, and we can associate a field
Bi with each spin on the lattice. For this reason, spin ice offers

075154-11098-0121/2012/86(7)/075154(25) ©2012 American Physical Society
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story for today : spin ice can do it all !
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what effect does quantum 
mechanics have on ice ?
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what kind of dynamics are there in ice ?

r ·B = 0

r ·B = 0



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = +1

r ·B = �1



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = +1

r ·B = �1



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = +1

r ·B = �1



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = +1

r ·B = �1



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = +1

r ·B = �1



Texas A&M  11.3.15

what kind of dynamics are there in ice ?

r ·B = 0

r ·B = 0



Texas A&M  11.3.15
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Pyrochlore photons: The U„1… spin liquid in a SÄ 1
2 three-dimensional frustrated magnet
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We study the S!1/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis
exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model
has a U(1) gauge symmetry generated by certain local rotations about the z axis in spin space. Upon addition
of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-
sharing octahedra, we can write down the exact ground-state wave function with no further approximations.
Using the properties of the soluble point we show that these models enter the U(1) spin liquid phase, a
fractionalized spin liquid with an emergent U(1) gauge structure. This phase supports gapped Sz!1/2 spinons
carrying the U(1) ‘‘electric’’ gauge charge, a gapped topological point defect or ‘‘magnetic’’ monopole, and a
gapless ‘‘photon,’’ which in spin language is a gapless, linearly dispersing Sz!0 collective mode. There are
power-law spin correlations with a nontrivial angular dependence, as well as U(1) topological order. This state
is stable to all zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a
convenient lattice version of electric-magnetic duality, we develop the effective description of the U(1) spin
liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the
universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wave
function. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and
for making contact with experiments.

DOI: 10.1103/PhysRevB.69.064404 PACS number!s": 75.45."j, 75.10.Jm, 71.10.Hf

I. INTRODUCTION

The search for quantum spin liquid states in frustrated
magnets can be traced back at least as far as the early sug-
gestion of a resonating valence bond state in the triangular
lattice Heisenberg model.1 Almost 15 years later, the sugges-
tion of such a state in the undoped high-Tc cuprates2 set off
an explosion of interest in two-dimensional spin liquids !i.e.,
Mott insulators at half filling with no broken symmetries".
Frustrated Heisenberg models on the square, triangular, and
kagomé lattices have all received significant attention as can-
didate systems for quantum disordered ground states. While
there has been comparatively little theoretical work on quan-
tum spin liquids in three-dimensional frustrated magnets,
materials with magnetic ions on the pyrochlore lattice !Fig.
2" may be good candidates for spin liquids and other exotic
states. To give one example, recent neutron-scattering experi-
ments on ZnCr2O4, a S!3/2 pyrochlore Heisenberg antifer-
romagnet, suggest a nontrivial disordered state3 above a tran-
sition to Néel order accompanied by a lattice distortion4 at
12.5 K.
Meanwhile, much work has been devoted to understand-

ing the properties of possible spin liquid states, independent
of their existence in particular microscopic models. Most of
the proposed spin liquid states support deconfined S!1/2
spinons; such states are fractionalized, in that some of the
elementary excitations carry quantum numbers that are frac-
tions of those allowed in a finite-size system. Fractionalized
states can be precisely characterized by their topological
order,5 which in the simplest scenario is associated with the
topological sectors of an emergent, deconfining Z2 gauge
field.6 The ‘‘vison,’’ a gapped vortexlike excitation that car-
ries the Z2 flux,7 must also be present. While topological

order does not require a liquid ground state and can coexist
with conventional long-range order, we believe it is probably
common in spin liquids and hence in some of the nearby
ordered states. Very recently, many of these ideas have been
put on firmer ground by the emergence of several micro-
scopic models supporting stable fractionalized phases in two
and three dimensions.8–14
Despite these recent theoretical successes, an unambigu-

ous experimental realization of these ideas is still lacking.
Indeed, spin liquid states seem rather rare; is topological or-
der rare as well? For Z2-fractionalized states this question is
difficult to answer, because the gapped visons have no effect
on easily measurable low-energy properties. Clever propos-
als have been made15 and carried out16,17 to directly detect
topological order in the cuprates !with negative results thus
far", but these experiments are difficult and rely on properties
of the phases proximate to a topologically ordered state. Z2
topological order is difficult enough to observe that it is im-
possible to say at present how rare or common it is.
Fortunately it may be possible to shed some light on the

experimental situation. In this paper, we present two models
of three-dimensional S!1/2 frustrated magnets, one on the
pyrochlore lattice, the other on a related network of corner-
sharing octahedra !the links of the cubic lattice, as shown in
Fig. 5". Both these models exhibit a fractionalized phase, the
U(1) spin liquid. This state has an emergent U(1) gauge
structure that gives rise to several remarkable properties:
there is a gapless ‘‘artificial photon’’ excitation, a gapped
spinon carrying ‘‘electric’’ gauge charge, a gapped ‘‘mag-
netic’’ monopole, an emergent 1/r ‘‘Coulomb’’ potential be-
tween pairs of spinons and monopoles, and U(1) topological
order. If this phase exists in a real material, the gapless pho-
ton should have important implications for low-energy ther-

PHYSICAL REVIEW B 69, 064404 !2004"
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I. INTRODUCTION

The search for quantum spin liquid states in frustrated
magnets can be traced back at least as far as the early sug-
gestion of a resonating valence bond state in the triangular
lattice Heisenberg model.1 Almost 15 years later, the sugges-
tion of such a state in the undoped high-Tc cuprates2 set off
an explosion of interest in two-dimensional spin liquids !i.e.,
Mott insulators at half filling with no broken symmetries".
Frustrated Heisenberg models on the square, triangular, and
kagomé lattices have all received significant attention as can-
didate systems for quantum disordered ground states. While
there has been comparatively little theoretical work on quan-
tum spin liquids in three-dimensional frustrated magnets,
materials with magnetic ions on the pyrochlore lattice !Fig.
2" may be good candidates for spin liquids and other exotic
states. To give one example, recent neutron-scattering experi-
ments on ZnCr2O4, a S!3/2 pyrochlore Heisenberg antifer-
romagnet, suggest a nontrivial disordered state3 above a tran-
sition to Néel order accompanied by a lattice distortion4 at
12.5 K.
Meanwhile, much work has been devoted to understand-

ing the properties of possible spin liquid states, independent
of their existence in particular microscopic models. Most of
the proposed spin liquid states support deconfined S!1/2
spinons; such states are fractionalized, in that some of the
elementary excitations carry quantum numbers that are frac-
tions of those allowed in a finite-size system. Fractionalized
states can be precisely characterized by their topological
order,5 which in the simplest scenario is associated with the
topological sectors of an emergent, deconfining Z2 gauge
field.6 The ‘‘vison,’’ a gapped vortexlike excitation that car-
ries the Z2 flux,7 must also be present. While topological

order does not require a liquid ground state and can coexist
with conventional long-range order, we believe it is probably
common in spin liquids and hence in some of the nearby
ordered states. Very recently, many of these ideas have been
put on firmer ground by the emergence of several micro-
scopic models supporting stable fractionalized phases in two
and three dimensions.8–14
Despite these recent theoretical successes, an unambigu-

ous experimental realization of these ideas is still lacking.
Indeed, spin liquid states seem rather rare; is topological or-
der rare as well? For Z2-fractionalized states this question is
difficult to answer, because the gapped visons have no effect
on easily measurable low-energy properties. Clever propos-
als have been made15 and carried out16,17 to directly detect
topological order in the cuprates !with negative results thus
far", but these experiments are difficult and rely on properties
of the phases proximate to a topologically ordered state. Z2
topological order is difficult enough to observe that it is im-
possible to say at present how rare or common it is.
Fortunately it may be possible to shed some light on the

experimental situation. In this paper, we present two models
of three-dimensional S!1/2 frustrated magnets, one on the
pyrochlore lattice, the other on a related network of corner-
sharing octahedra !the links of the cubic lattice, as shown in
Fig. 5". Both these models exhibit a fractionalized phase, the
U(1) spin liquid. This state has an emergent U(1) gauge
structure that gives rise to several remarkable properties:
there is a gapless ‘‘artificial photon’’ excitation, a gapped
spinon carrying ‘‘electric’’ gauge charge, a gapped ‘‘mag-
netic’’ monopole, an emergent 1/r ‘‘Coulomb’’ potential be-
tween pairs of spinons and monopoles, and U(1) topological
order. If this phase exists in a real material, the gapless pho-
ton should have important implications for low-energy ther-

PHYSICAL REVIEW B 69, 064404 !2004"

0163-1829/2004/69!6"/064404!21"/$22.50 ©2004 The American Physical Society69 064404-1

…argue for U(1)-liquid phase, based on properties of exactly soluble point µ=g

Hµ = �g
X

7
|�ih |+ | ih� |+ µ

X

7
|�ih� |+ | ih |



Texas A&M  11.3.15 39

so what’s a quantum U(1) liquid ?
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And God said "Let  there be light",  and there was light - Genesis 1 - 3  

We show that the large distance behavior of gauge theories is stable, within certain limits, with respect to addition of 
gauge noninvariant interactions at small distances. 

1. One of  us (H.B.N.) has suggested [1 ] earlier that 
symmetries and physical laws should arise naturally 
from some essentially random dynamics rather than 
being postulated to be exact or adjusted by hand +1. 
The idea of  postulating dynamical  stability ,2 in the 
sense that coupling parameters shall not be contrived 
has though been spread for a long time. In earlier 
papers some of  the present authors (H.B.N. and M.N.) 
[5],  and Chadha, have obtained Lorentz invariance 
in non-Lorentz covariant Yang-Mil ls  theories and elec- 
t rodynamics in the infrared limit as compared to a 
fundamental scale, e.g. the Planck length. In these deri- 
vations we put in gauge invariance ,3 as an assump- 
t i on .  It would also be nice to show that gauge invari- 

+1 See also ref. [2] for a review by Iliopoulos and a support- 
ing philosophy by Woo [3]. 

t~ See e.g. Thome [4]. 
+3 For a review of gauge theories, see ref. [6]. 

ance has a high chance of  arising spontaneously even 
if  nature is not gauge invariant at the fundamental 
scale. 

Iliopoulos and Nanopoulos [7] have informed us 
that they are calculating the renormalization group/3- 
function for various gauge breaking terms and hope for 
approximate gauge invariance to appear towards the 
infrared. 

This at tempt is similar to what Br6zin and Zinn- 
Justin [8] did for an asymmetric ~.i/kl~iq)/(Pk~l theory. 
They noticed that this theory becomes automatically 
O(n) invariant in the infrared under suitable condi- 
tions. 

These are the same type of  arguments as the 
Lorentz invariance derivation by two of  us (H.B.N. 
and M.N.) [3] and Chadha. 

Instead we shall introduce an exact gauge &variance 
in a formal way and then deduce the real one from it in 
the infrared. We shall show that a gauge theory arises 
automatically at large distances from a theory that 
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emergent gauge fields now seen in many 
different physical systems… 
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so does the idea work here ?
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finite temperature correlation functions, 
calculated using QMC [T ≈ g], and compared to 

the predictions of a U(1) gauge theory 
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Unusual Liquid State of Hard-Core Bosons on the Pyrochlore Lattice
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We study the physics of hard-core bosons with unfrustrated hopping (t) and nearest-neighbor repulsion
(V) on the three dimensional pyrochlore lattice. At half-filling, we demonstrate that the small V=t
superfluid state eventually becomes unstable at large enough V=t to an unusual insulating state which
displays no broken lattice translation symmetry. Equal time and static density correlators in this insulator
are well described by a mapping to electric field correlators in the Coulomb phase of a U!1" lattice gauge
theory, allowing us to identify this insulator with a U!1" fractionalized Mott-insulating state. The
possibility of observing this phase in suitably designed atom-trap experiments with ultracold atoms is
also discussed, as are specific experimental signatures.

DOI: 10.1103/PhysRevLett.100.047208 PACS numbers: 75.10.Jm, 05.30.Jp, 71.27.+a

Much of our current understanding of the low tempera-
ture behavior of condensed matter systems is based on
highly successful theoretical paradigms such as Landau’s
Fermi liquid theory of normal metals, Bogoliubov theory
for superfluids, BCS theory of superconductivity, and spin-
wave theory for ferromagnets and antiferromagnets [1].
However, some systems exhibit behavior that falls outside
of any of these standard paradigms—one example of this
is the unconventional normal state of underdoped high-Tc
superconductors [2,3], while other examples include the
cooperative paramagnetic state of frustrated magnets [4]
and the unusual phenomenology of heavy fermion com-
pounds [5]. For instance, in the underdoped normal state of
high-Tc superconductors, some of the experimental evi-
dence is suggestive of the fact that the elementary quasi-
particles excitations are not spin-1=2 charge-e holes, but
spinless charge carriers propagating separately from
chargeless spin carriers [2,3].

This has motivated much of the recent effort aimed at
providing theoretically consistent descriptions of low tem-
perature phases of matter that would display such spin-
charge separation, or more generally, quasiparticle frac-
tionalization. These developments [6] allow one to con-
clude that such exotic behavior is indeed possible, and go
on to provide a description of quasiparticle fractionaliza-
tion in terms of an effective field theory with gauge sym-
metry [7,8]. In this approach, fractionalized quasiparticles
emerge as the true low-energy excitations in deconfined
phases of a gauge theory (in which the emergent gauge
force is not strong enough to bind the fractionalized qua-
siparticles into more conventional quanta), and can be
accompanied by additional gauge excitations that carry
energy but no spin or charge (such as the vortex excitation
of a Z2 gauge theory [9]).

A closely related strand of activity has focused on the
analysis of particular microscopic models in order to
understand whether they exhibit such exotic phases for
specific values of input parameters. This has led, for in-

stance, to the construction of several different models [10–
12] which exhibit so called Z2 deconfined phases (the
nomenclature refers to the effective gauge theory that
affords the most ‘‘natural‘‘ description of the low-energy
physics).

One may now ask: Is there an experimental system
which would display one of these fractionalized phases
for a definite range of control parameters? A promising
avenue in this regard is the physics of ultracold atoms in
optical lattice potentials. Recent work has demonstrated
that a wide variety of phenomena of interest to condensed
matter physics can be studied by appropriately engineering
systems of ultracold atoms in optical potentials. For in-
stance, it has been possible to provide a cold-atom realiza-
tion of the superfluid-insulator transition in a bosonic
hubbard model with on site interactions on a cubic lattice
[13,14]. This has been followed by several interesting
proposals for realizing fermionic and bosonic models
with a variety of tunable interactions in different optical
lattice geometries [15,16].

In this Letter, we use sophisticated Quantum
Monte Carlo (QMC) methods to provide the first confir-
mation of the existence of a U!1" fractionalized insulating
phase that may be realized in cold-atom systems modeled
by the Hamiltonian:

 H #
X

hiji
$V!ni % 1=2"!nj % 1=2" % t!byi bj & bibyj "'

&
X
i

$U!ni % 1=2"2 %!ni': (1)

Here, ni is the particle number at sites i of a three dimen-
sional pyrochlore lattice [Fig. 1(a)], byi is the correspond-
ing boson creation operator, U is the on site repulsion, and
V the nearest-neighbor repulsion between bosons hopping
(with amplitude t) on the nearest-neighbor links hiji.

Although the pyrochlore lattice geometry we consider is
technically challenging to realize, recent work that ap-
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Fermi liquid theory of normal metals, Bogoliubov theory
for superfluids, BCS theory of superconductivity, and spin-
wave theory for ferromagnets and antiferromagnets [1].
However, some systems exhibit behavior that falls outside
of any of these standard paradigms—one example of this
is the unconventional normal state of underdoped high-Tc
superconductors [2,3], while other examples include the
cooperative paramagnetic state of frustrated magnets [4]
and the unusual phenomenology of heavy fermion com-
pounds [5]. For instance, in the underdoped normal state of
high-Tc superconductors, some of the experimental evi-
dence is suggestive of the fact that the elementary quasi-
particles excitations are not spin-1=2 charge-e holes, but
spinless charge carriers propagating separately from
chargeless spin carriers [2,3].

This has motivated much of the recent effort aimed at
providing theoretically consistent descriptions of low tem-
perature phases of matter that would display such spin-
charge separation, or more generally, quasiparticle frac-
tionalization. These developments [6] allow one to con-
clude that such exotic behavior is indeed possible, and go
on to provide a description of quasiparticle fractionaliza-
tion in terms of an effective field theory with gauge sym-
metry [7,8]. In this approach, fractionalized quasiparticles
emerge as the true low-energy excitations in deconfined
phases of a gauge theory (in which the emergent gauge
force is not strong enough to bind the fractionalized qua-
siparticles into more conventional quanta), and can be
accompanied by additional gauge excitations that carry
energy but no spin or charge (such as the vortex excitation
of a Z2 gauge theory [9]).

A closely related strand of activity has focused on the
analysis of particular microscopic models in order to
understand whether they exhibit such exotic phases for
specific values of input parameters. This has led, for in-

stance, to the construction of several different models [10–
12] which exhibit so called Z2 deconfined phases (the
nomenclature refers to the effective gauge theory that
affords the most ‘‘natural‘‘ description of the low-energy
physics).

One may now ask: Is there an experimental system
which would display one of these fractionalized phases
for a definite range of control parameters? A promising
avenue in this regard is the physics of ultracold atoms in
optical lattice potentials. Recent work has demonstrated
that a wide variety of phenomena of interest to condensed
matter physics can be studied by appropriately engineering
systems of ultracold atoms in optical potentials. For in-
stance, it has been possible to provide a cold-atom realiza-
tion of the superfluid-insulator transition in a bosonic
hubbard model with on site interactions on a cubic lattice
[13,14]. This has been followed by several interesting
proposals for realizing fermionic and bosonic models
with a variety of tunable interactions in different optical
lattice geometries [15,16].

In this Letter, we use sophisticated Quantum
Monte Carlo (QMC) methods to provide the first confir-
mation of the existence of a U!1" fractionalized insulating
phase that may be realized in cold-atom systems modeled
by the Hamiltonian:

 H #
X

hiji
$V!ni % 1=2"!nj % 1=2" % t!byi bj & bibyj "'

&
X
i

$U!ni % 1=2"2 %!ni': (1)

Here, ni is the particle number at sites i of a three dimen-
sional pyrochlore lattice [Fig. 1(a)], byi is the correspond-
ing boson creation operator, U is the on site repulsion, and
V the nearest-neighbor repulsion between bosons hopping
(with amplitude t) on the nearest-neighbor links hiji.

Although the pyrochlore lattice geometry we consider is
technically challenging to realize, recent work that ap-
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modynamics, transport, and spectroscopy; therefore U(1)
fractionalization may be easier to find in experiments. Such
states, thus far realized in large-N spin models18 and bosonic
Hubbard-type models,10–12 arise as the deconfined or Cou-
lomb phase of compact U(1) lattice gauge theory. While
most work on spin liquids has focused on d!2, motivated
by the cuprates and the conventional wisdom that quantum
fluctuations are more effective at destroying long-range order
in low dimensions, the U(1) spin liquid only occurs in d
"3; for d!2 the Coulomb phase of compact U(1) gauge
theory #with gapped matter$ is always unstable due to instan-
ton effects.19
Both models are of intrinsic interest as examples of trac-

table but nontrivial frustrated magnets. The pyrochlore
model is particularly appealing due to its simplicity: its deri-
vation begins with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet. Taking the limit of large easy-axis exchange
anisotropy Jz"J! simplifies the problem by breaking the
spectrum into extensively degenerate manifolds with large
separations of O(Jz). It is then possible to write an effective
Hamiltonian describing the splitting of the low-energy mani-
fold, using standard techniques of degenerate perturbation
theory in J! . This effective Hamiltonian has a U(1) gauge
structure, which forms the foundation for our subsequent
analysis.20 Another point of view, equivalent at the level of
perturbation theory but perhaps with broader implications in
more general scenarios, is that the low-energy sector of the
model is unitarily equivalent to a U(1) gauge theory. It is
not obvious how to treat the resulting model analytically, but
upon addition of an extra six-site interaction term it can be
tuned to a soluble point where it is possible to write an exact
ground-state wave function with no further approximations.
The models can be reinterpreted as quantum dimer models
#QDM’s$, and the extra term as the analog of the Rokhsar-
Kivelson #RK$ potential in the square lattice QDM.21 As will
be explained in detail below, the properties of the soluble
point allow us to locate the U(1) spin liquid adjacent to it.
Since this state is stable to all zero-temperature perturba-
tions, it persists over a finite extent of the phase diagram
#Fig. 1$. Furthermore, stability to large but finite Jz implies
that the U(1) gauge structure persists in the absence of mi-
croscopic local symmetries and is truly emergent. On the
purely theoretical side, we believe these models give the first
examples of U(1) gauge theories that have a deconfining
phase even in the limit of infinitely strong bare coupling. The
first such Z2 gauge theory was discovered only recently by
Moessner and Sondhi.8
The effective theory of the U(1) spin liquid and the

soluble RK point is simply Gaussian quantum electrodynam-
ics #QED$. At the RK point, which is itself a special decon-
fined limit of the generic phase, the ‘‘electric stiffness,’’ or
coefficient of E2 in the Hamiltonian, vanishes. This is a
higher-dimensional generalization of the effective picture of
the square lattice QDM in terms of a coarse-grained height
field.22
The U(1) spin liquid has power-law correlations with

nontrivial angular dependence, U(1) topological order, and
supports gapped Sz!1/2 spinons, a gapped topological point
defect #the ‘‘magnetic’’ monopole$, and a gapless Sz!0 col-

lective mode corresponding to the photon of the gauge
theory. The latter excitation makes an additive T3 contribu-
tion to the low-temperature specific heat and should affect
various other low-energy properties of U(1)-fractionalized
phases %either the U(1) spin liquid, or phases with coexisting
conventional and topological order&. If such a phase exists in
a real material, we speculate that it may be possible to probe
‘‘photons’’ with photons via Raman scattering.

A. Outline

We begin Sec. II with a derivation of the pyrochlore
model starting from the Heisenberg antiferromagnet. In Sec.
II B the cubic #or corner-sharing octahedra$ model is dis-
cussed. The remainder of Sec. II is concerned with demon-
strating the equivalence of the spin models to frustrated com-
pact U(1) gauge theories and developing a useful lattice
version of electric-magnetic duality.
Beginning from the dual description, Sec. III develops the

effective description of the U(1) spin liquid and the soluble
point in terms of Gaussian quantum electrodynamics. Cor-
rections to effective action and to the scaling equalities be-
tween microscopic and effective degrees of freedom are dis-
cussed in Sec. III C. Section IV contains a discussion of the
universal properties of the U(1) spin liquid, including its
U(1) topological order. In Sec. V we present our analysis of
the soluble point ground-state wave function, which gives
strong support for the validity of our effective picture. We
conclude in Sec. VI with a discussion of open issues, focus-
ing on the challenging problems of understanding this phys-
ics in a broader range of models and looking for
U(1)-fractionalized phases in real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore model

We begin with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet on the pyrochlore lattice. This structure is a
three-dimensional network of corner-sharing tetrahedra #Fig.

FIG. 1. Phase diagram for both models. The parameter V/Jring
is the relative strength of the Rokhsar-Kivelson potential and the
XY ring exchange that obtains in the easy-axis limit of the Heisen-
berg model. The soluble point is located at V/Jring!1, which is a
special deconfined point of the adjacent U(1) spin liquid. Just to
the right of the soluble point the models go into an Ising ordered
state. Sufficiently far to the left we expect Ising order, while at
intermediate values of V/Jring states with broken translation sym-
metry but no magnetic order are also possible. Immediately to the
left of the soluble point, the U(1) spin liquid exists over a finite
#but unknown$ extent of the phase diagram.
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Ice states, in which frustrated interactions lead to a macroscopic ground-state degeneracy, occur in water

ice, in problems of frustrated charge order on the pyrochlore lattice, and in the family of rare-earth magnets

collectively known as spin ice. Of particular interest at the moment are ‘‘quantum spin-ice’’ materials,

where large quantum fluctuations may permit tunnelling between a macroscopic number of different

classical ground states. Here we use zero-temperature quantumMonte Carlo simulations to show how such

tunnelling can lift the degeneracy of a spin or charge ice, stabilizing a unique ‘‘quantum-ice’’ ground state—

a quantum liquid with excitations described by the Maxwell action of ð3þ 1Þ-dimensional quantum

electrodynamics. We further identify a competing ordered squiggle state, and show how both squiggle

and quantum-ice states might be distinguished in neutron scattering experiments on a spin-ice material.
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Ice is one of the strangest substances known to man. In
the common forms of water ice, protons occupy the space
between tetrahedrally coordinated oxygen ions, and each
oxygen obeys the ‘‘ice rule’’ constraint of forming two
long and two short bonds with neighboring protons [1,2]. It
was quickly realized that these ice rules did not select a
single, unique proton configuration [1], but rather a vast
manifold of classical ground states, with an entropy per
water molecule of s0 $ kB logð3=2Þ [2]. This prediction
proved to be in good agreement with measurements of
entropy at low temperatures [3], but stands in clear viola-
tion of the third law of thermodynamics—at zero tempera-
ture we expect water ice to be described by a single,
unique, ground-state wave function.

The same ice rules, and the same extensive ground-state
degeneracy, arise in (i) problems of frustrated charge [4,5]
and orbital [6] order; (ii) proton-bonded ferroelectrics [7];
(iii) statistical descriptions of polymer melts [8]; and (iv) a
family of rare-earth magnets collectively known as ‘‘spin
ice’’ [9–12]. In each case, the ice rules have nontrivial
consequences for the properties of the system, notably an
algebraic decay of correlations [7,13–15] and excitations
with ‘‘fractional’’ character [1,5,8,16,17]. These exotic
features of the ice state have been extremely well charac-
terized in spin ice, where the algebraic decay of correlation
functions is visible as ‘‘pinch points’’ in the magnetic
structure factor [18], and the fractional excitations have
the character of magnetic monopoles [19–22].

All of these systems beg the obvious question—how is
the degeneracy of the ice manifold lifted at zero tempera-
ture? The simplest way for an ice to recover a unique
ground state at zero temperature is for it to order. This is
exactly what happens in KOH-doped water ice, where the
protons order below 70 K [23]. However in many spin-ice

materials, no order is observed [12]. This raises the intri-
guing possibility that there might exist a zero-temperature
‘‘quantum-ice’’ state, in which a single quantum mechani-
cal ground state is formed through the coherent superpo-
sition of an exponentially large number of classical ice
configurations. Such a state could have a vanishing entropy
at zero temperature, and so satisfy the third law of ther-
modynamics, without sacrificing the algebraic correlations
and fractional excitations (magnetic monopoles) associ-
ated with the degeneracy of the ice states.
In this Letter, we use zero-temperature quantum

Monte Carlo simulations to establish the ground state of
the minimal microscopic model of a charge or spin ice with
tunnelling between different ice configurations. We find
that the ground state is a quantum liquid, with an emergent
U(1) gauge symmetry, and excitations described by the
Maxwell action of ð3þ 1Þ-dimensional quantum electro-
dynamics. This state is the exact, quantum, analogue of the
spin-liquid phase realized in ‘‘classical’’ spin ices such as
Dy2Ti2O7, and exhibits the same magnetic monopole ex-
citations. We also explore how quantum effects in this
novel liquid modify the ‘‘pinch-point’’ singularities seen
in neutron scattering experiments on spin ices.
The best systems in which to look for a quantum ice are

those which are able to tunnel from one ice configuration to
another. In water ice, in the absence of mobile ionic defects
[24], this tunnelling occurs through the collective hopping
of protons on a 6-link loop. In spin ice, it is the cyclic
exchange of Ising spins on a hexagonal plaquette [25],
illustrated in Fig. 1. In both cases, the ice rules can be
written as a compact lattice U(1)-gauge theory in which the
displacement of protons—or orientation of magnetic mo-
ments—are associated with a fictitious magnetic field
B ¼ r&A, in the Coulomb gauge r 'A ¼ 0 [13,15].
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modynamics, transport, and spectroscopy; therefore U(1)
fractionalization may be easier to find in experiments. Such
states, thus far realized in large-N spin models18 and bosonic
Hubbard-type models,10–12 arise as the deconfined or Cou-
lomb phase of compact U(1) lattice gauge theory. While
most work on spin liquids has focused on d!2, motivated
by the cuprates and the conventional wisdom that quantum
fluctuations are more effective at destroying long-range order
in low dimensions, the U(1) spin liquid only occurs in d
"3; for d!2 the Coulomb phase of compact U(1) gauge
theory #with gapped matter$ is always unstable due to instan-
ton effects.19
Both models are of intrinsic interest as examples of trac-

table but nontrivial frustrated magnets. The pyrochlore
model is particularly appealing due to its simplicity: its deri-
vation begins with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet. Taking the limit of large easy-axis exchange
anisotropy Jz"J! simplifies the problem by breaking the
spectrum into extensively degenerate manifolds with large
separations of O(Jz). It is then possible to write an effective
Hamiltonian describing the splitting of the low-energy mani-
fold, using standard techniques of degenerate perturbation
theory in J! . This effective Hamiltonian has a U(1) gauge
structure, which forms the foundation for our subsequent
analysis.20 Another point of view, equivalent at the level of
perturbation theory but perhaps with broader implications in
more general scenarios, is that the low-energy sector of the
model is unitarily equivalent to a U(1) gauge theory. It is
not obvious how to treat the resulting model analytically, but
upon addition of an extra six-site interaction term it can be
tuned to a soluble point where it is possible to write an exact
ground-state wave function with no further approximations.
The models can be reinterpreted as quantum dimer models
#QDM’s$, and the extra term as the analog of the Rokhsar-
Kivelson #RK$ potential in the square lattice QDM.21 As will
be explained in detail below, the properties of the soluble
point allow us to locate the U(1) spin liquid adjacent to it.
Since this state is stable to all zero-temperature perturba-
tions, it persists over a finite extent of the phase diagram
#Fig. 1$. Furthermore, stability to large but finite Jz implies
that the U(1) gauge structure persists in the absence of mi-
croscopic local symmetries and is truly emergent. On the
purely theoretical side, we believe these models give the first
examples of U(1) gauge theories that have a deconfining
phase even in the limit of infinitely strong bare coupling. The
first such Z2 gauge theory was discovered only recently by
Moessner and Sondhi.8
The effective theory of the U(1) spin liquid and the

soluble RK point is simply Gaussian quantum electrodynam-
ics #QED$. At the RK point, which is itself a special decon-
fined limit of the generic phase, the ‘‘electric stiffness,’’ or
coefficient of E2 in the Hamiltonian, vanishes. This is a
higher-dimensional generalization of the effective picture of
the square lattice QDM in terms of a coarse-grained height
field.22
The U(1) spin liquid has power-law correlations with

nontrivial angular dependence, U(1) topological order, and
supports gapped Sz!1/2 spinons, a gapped topological point
defect #the ‘‘magnetic’’ monopole$, and a gapless Sz!0 col-

lective mode corresponding to the photon of the gauge
theory. The latter excitation makes an additive T3 contribu-
tion to the low-temperature specific heat and should affect
various other low-energy properties of U(1)-fractionalized
phases %either the U(1) spin liquid, or phases with coexisting
conventional and topological order&. If such a phase exists in
a real material, we speculate that it may be possible to probe
‘‘photons’’ with photons via Raman scattering.

A. Outline

We begin Sec. II with a derivation of the pyrochlore
model starting from the Heisenberg antiferromagnet. In Sec.
II B the cubic #or corner-sharing octahedra$ model is dis-
cussed. The remainder of Sec. II is concerned with demon-
strating the equivalence of the spin models to frustrated com-
pact U(1) gauge theories and developing a useful lattice
version of electric-magnetic duality.
Beginning from the dual description, Sec. III develops the

effective description of the U(1) spin liquid and the soluble
point in terms of Gaussian quantum electrodynamics. Cor-
rections to effective action and to the scaling equalities be-
tween microscopic and effective degrees of freedom are dis-
cussed in Sec. III C. Section IV contains a discussion of the
universal properties of the U(1) spin liquid, including its
U(1) topological order. In Sec. V we present our analysis of
the soluble point ground-state wave function, which gives
strong support for the validity of our effective picture. We
conclude in Sec. VI with a discussion of open issues, focus-
ing on the challenging problems of understanding this phys-
ics in a broader range of models and looking for
U(1)-fractionalized phases in real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore model

We begin with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet on the pyrochlore lattice. This structure is a
three-dimensional network of corner-sharing tetrahedra #Fig.

FIG. 1. Phase diagram for both models. The parameter V/Jring
is the relative strength of the Rokhsar-Kivelson potential and the
XY ring exchange that obtains in the easy-axis limit of the Heisen-
berg model. The soluble point is located at V/Jring!1, which is a
special deconfined point of the adjacent U(1) spin liquid. Just to
the right of the soluble point the models go into an Ising ordered
state. Sufficiently far to the left we expect Ising order, while at
intermediate values of V/Jring states with broken translation sym-
metry but no magnetic order are also possible. Immediately to the
left of the soluble point, the U(1) spin liquid exists over a finite
#but unknown$ extent of the phase diagram.
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Ice states, in which frustrated interactions lead to a macroscopic ground-state degeneracy, occur in water

ice, in problems of frustrated charge order on the pyrochlore lattice, and in the family of rare-earth magnets

collectively known as spin ice. Of particular interest at the moment are ‘‘quantum spin-ice’’ materials,

where large quantum fluctuations may permit tunnelling between a macroscopic number of different

classical ground states. Here we use zero-temperature quantumMonte Carlo simulations to show how such

tunnelling can lift the degeneracy of a spin or charge ice, stabilizing a unique ‘‘quantum-ice’’ ground state—

a quantum liquid with excitations described by the Maxwell action of ð3þ 1Þ-dimensional quantum

electrodynamics. We further identify a competing ordered squiggle state, and show how both squiggle

and quantum-ice states might be distinguished in neutron scattering experiments on a spin-ice material.
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Ice is one of the strangest substances known to man. In
the common forms of water ice, protons occupy the space
between tetrahedrally coordinated oxygen ions, and each
oxygen obeys the ‘‘ice rule’’ constraint of forming two
long and two short bonds with neighboring protons [1,2]. It
was quickly realized that these ice rules did not select a
single, unique proton configuration [1], but rather a vast
manifold of classical ground states, with an entropy per
water molecule of s0 $ kB logð3=2Þ [2]. This prediction
proved to be in good agreement with measurements of
entropy at low temperatures [3], but stands in clear viola-
tion of the third law of thermodynamics—at zero tempera-
ture we expect water ice to be described by a single,
unique, ground-state wave function.

The same ice rules, and the same extensive ground-state
degeneracy, arise in (i) problems of frustrated charge [4,5]
and orbital [6] order; (ii) proton-bonded ferroelectrics [7];
(iii) statistical descriptions of polymer melts [8]; and (iv) a
family of rare-earth magnets collectively known as ‘‘spin
ice’’ [9–12]. In each case, the ice rules have nontrivial
consequences for the properties of the system, notably an
algebraic decay of correlations [7,13–15] and excitations
with ‘‘fractional’’ character [1,5,8,16,17]. These exotic
features of the ice state have been extremely well charac-
terized in spin ice, where the algebraic decay of correlation
functions is visible as ‘‘pinch points’’ in the magnetic
structure factor [18], and the fractional excitations have
the character of magnetic monopoles [19–22].

All of these systems beg the obvious question—how is
the degeneracy of the ice manifold lifted at zero tempera-
ture? The simplest way for an ice to recover a unique
ground state at zero temperature is for it to order. This is
exactly what happens in KOH-doped water ice, where the
protons order below 70 K [23]. However in many spin-ice

materials, no order is observed [12]. This raises the intri-
guing possibility that there might exist a zero-temperature
‘‘quantum-ice’’ state, in which a single quantum mechani-
cal ground state is formed through the coherent superpo-
sition of an exponentially large number of classical ice
configurations. Such a state could have a vanishing entropy
at zero temperature, and so satisfy the third law of ther-
modynamics, without sacrificing the algebraic correlations
and fractional excitations (magnetic monopoles) associ-
ated with the degeneracy of the ice states.
In this Letter, we use zero-temperature quantum

Monte Carlo simulations to establish the ground state of
the minimal microscopic model of a charge or spin ice with
tunnelling between different ice configurations. We find
that the ground state is a quantum liquid, with an emergent
U(1) gauge symmetry, and excitations described by the
Maxwell action of ð3þ 1Þ-dimensional quantum electro-
dynamics. This state is the exact, quantum, analogue of the
spin-liquid phase realized in ‘‘classical’’ spin ices such as
Dy2Ti2O7, and exhibits the same magnetic monopole ex-
citations. We also explore how quantum effects in this
novel liquid modify the ‘‘pinch-point’’ singularities seen
in neutron scattering experiments on spin ices.
The best systems in which to look for a quantum ice are

those which are able to tunnel from one ice configuration to
another. In water ice, in the absence of mobile ionic defects
[24], this tunnelling occurs through the collective hopping
of protons on a 6-link loop. In spin ice, it is the cyclic
exchange of Ising spins on a hexagonal plaquette [25],
illustrated in Fig. 1. In both cases, the ice rules can be
written as a compact lattice U(1)-gauge theory in which the
displacement of protons—or orientation of magnetic mo-
ments—are associated with a fictitious magnetic field
B ¼ r&A, in the Coulomb gauge r 'A ¼ 0 [13,15].
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We develop a non-perturbative “gauge Mean Field Theory” (gMFT) method to study a general
e↵ective spin-1/2 model for magnetism in rare earth pyrochlores. gMFT is based on a novel exact
slave-particle formulation, and matches both the perturbative regime near the classical spin ice limit
and the semiclassical approximation far from it. We show that the full phase diagram contains two
exotic phases: a quantum spin liquid and a coulombic ferromagnet, both of which support deconfined
spinon excitations and emergent quantum electrodynamics. Phenomenological properties of these
phases are discussed.

Amongst the celebrated exotic phases of matter, of
particular recent interest are the Quantum Spin Liq-
uids (QSLs) [1]. Behind seemingly innocuous defining
properties –strong spin correlations, the absence of static
magnetic moments, and unbroken crystalline symmetry–,
QSLs display the consequences of extreme quantum en-
tanglement. These include emergent gauge fields and
fractional excitations, which take these states beyond the
usual “mean field” paradigm of phases of matter. Not
only are these phases challenging to predict and describe,
they have also proven very hard to find in the laboratory,
rendering their search and discovery even more tantaliz-
ing.

A consensual place to look for QSLs is among frus-
trated magnets [1]. Frustration allows the spins to avoid
phases where they are either ordered or frozen, with rela-
tively small fluctuations and correlations between them.
Recent experiments have given compelling evidence of
a QSL state in certain two-dimensional organic mate-
rials [2], but both microscopic and fully consistent phe-
nomenological theories are lacking. By contrast, classical
spin liquids have been conclusively seen and microscop-
ically understood in the spin ice pyrochlores [3]. This
raises the possibility, suggested experimentally [4] and
theoretically [5], of QSLs in those rare earth pyrochlores
in which spins are non-classical, supported by recent re-
sults on Yb

2

Ti
2

O
7

[4]. However, for any material, only
detailed, quantitative theory predicting the type(s) and
properties of QSLs that appear and matching experi-
ments can take the physics to the next level.

We take up this challenge here for quantum rare earth
pyrochlores. Our analysis confirms that a “U(1)” QSL
phase exists in the phase diagram (Fig. 1) of a spectrum
of real materials, and is furthermore supplemented by
another exotic phase, a Coulombic ferromagnet, which
contains spinons, but displays non-zero magnetization.
We also study the confinement transitions out of these
Coulomb phases, which are analogous to “Higgs” transi-
tions [6]. Finally, we discuss experimental signatures of
the U(1) QSL, and of the U(1) Coulomb ferromagnet.
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exchange Hamiltonian for spin-1/2 spins (real or e↵ec-
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where � is a 4 ⇥ 4 complex unimodular matrix, and
⇣ = ��⇤. The explicit expression of � and of the local
bases whose components are used in Eq. (1) are given in
the Supplementary Material. The first term (we assume
in this paper J

zz

> 0), taken alone, gives the highly frus-
trated classical nearest-neighbor spin ice model, which
exhibits an extensive ground state degeneracy of “two-
in-two-out” states.
In fact, this model has been studied theoretically in
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phase diagram within 
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We develop a non-perturbative “gauge Mean Field Theory” (gMFT) method to study a general
e↵ective spin-1/2 model for magnetism in rare earth pyrochlores. gMFT is based on a novel exact
slave-particle formulation, and matches both the perturbative regime near the classical spin ice limit
and the semiclassical approximation far from it. We show that the full phase diagram contains two
exotic phases: a quantum spin liquid and a coulombic ferromagnet, both of which support deconfined
spinon excitations and emergent quantum electrodynamics. Phenomenological properties of these
phases are discussed.
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raises the possibility, suggested experimentally [4] and
theoretically [5], of QSLs in those rare earth pyrochlores
in which spins are non-classical, supported by recent re-
sults on Yb
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[4]. However, for any material, only
detailed, quantitative theory predicting the type(s) and
properties of QSLs that appear and matching experi-
ments can take the physics to the next level.

We take up this challenge here for quantum rare earth
pyrochlores. Our analysis confirms that a “U(1)” QSL
phase exists in the phase diagram (Fig. 1) of a spectrum
of real materials, and is furthermore supplemented by
another exotic phase, a Coulombic ferromagnet, which
contains spinons, but displays non-zero magnetization.
We also study the confinement transitions out of these
Coulomb phases, which are analogous to “Higgs” transi-
tions [6]. Finally, we discuss experimental signatures of
the U(1) QSL, and of the U(1) Coulomb ferromagnet.
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quantum spin liquids derived 
from spin ice

valid for more general interactions ?
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prediction for inelastic neutron scattering

50

Owen Benton et al., Phys. Rev. B. 86, 075174 (2012) ❦ 

pinch points are suppressed !

v.

prediction for quasi-elastic neutron scattering

…parameterize lattice gauge theory from quantum Monte Carlo simulation

(acting on spin-ice states)

consider minimal model for a quantum spin ice…

Htunneling = �g
X

7
|�ih |+ | ih� |

what would this look like in experiment ?

O. Benton et al., Phys. Rev. B. 86, 075174 (2012) ❦

photons !
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S↵�
(q) / hB↵(�q)B�(q)i =

8⇡4q

c


�↵� � q↵q�

q2

�
coth

⇣ cq

2T

⌘

prediction of lattice gauge theory :

51

where did the pinch-points go ?

O. Benton et al., Phys. Rev. B. 86, 075174 (2012) ❦

S↵�(q) =

Z
d! S↵�(q,!)

quasi-elastic neutron scattering measures the  
equal-time structure factor:

additional factor of q
pinch point

z }| {

| {z }
thermal excitation of photons
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...i.e. pinch-points are progressively restored at finite T

O. Benton et al., Phys. Rev. B. 83, 075174 (2012) ❦

how does this connect with (classical) spin-ice ?
simplest scenario is a crossover, controlled by the thermal excitation of photons

�T =
⇡c

T
for q ⌧ 1

�T
where thermal de Broglie wavelength i.e. see classical correlations for

S↵�(q ⇡ 0) / T


�↵� � q↵q�

q2

�thermal correction to  
quantum correlations 

at low T :
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FIG. 1: (Color online) Finite-temperature phase diagram for
J? < 0, obtained with QMC simulations. Below the phase
boundary (solid line) the transverse (xy) component of spins
are ferromagnetically ordered, i.e., the order parameter hs+i
and the sti↵ness ⇢S are both finite. The blue dots are ex-
tracted from Ref. [5]. The dashed lines indicate the crossover
temperatures estimated from the position of the broad peaks
in specific heat curves.

successive crossovers and a single first-order phase transi-
tion shown with dashed and a solid lines in Fig. 1. From
a high-temperature side, the system first crosses over to
a classical Coulomb liquid or CSI regime with the en-
tropy approximating to the Pauling entropy, and then
for small enough |J?/J |, to a quantum Coulomb liquid
or QSI regime where the Pauling entropy is gradually re-
leased to zero. For J? < J?c

with J?c

/J = �0.103 [5], a
first-order phase transition occurs to an XY-ferromagnet
(XY-FM) [5].

All the numerical results presented in this Letter
are obtained with unbiased worldline QMC simulations
based on the path integral formulation in the continu-
ous imaginary time [33]. To update worldline configu-
rations, we adopt a directed-loop algorithm [34] in the
{szr} basis, with the modification previously introduced
for softcore bosonic systems to reduce the computational
cost [35]. To moderate the freezing problem often aris-
ing in frustrated systems, we employed the thermal an-
nealing, i.e., the temperature is gradually decreased in
the simulations. We performed typically ⇠10000 Monte-
Carlo sweeps for each temperature.

Let us start with the disordered side J? > J?c

of
the phase diagram. Figure 2 shows for J?/J = �1/11
the temperature dependence of (a) the energy density
" ⌘ hHi/N

s

with N
s

(= 4 ⇥ L3) being the total number
of spins, (b) the specific heat C ⌘ @"/@T , and (c) the

entropy S ⌘ log 2 � R

T

max

T

(C/T )dT with T
max

= 50/11.
We find two successive crossovers that are signaled by
two broad peaks in the specific heat at T

CSI

⇠ 0.2J and
T
QSI

⇠ |J3

?/J
2|. The higher-temperature crossover is
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FIG. 2: (Color online) Temperature dependence of (a) the
energy density ", (b) the specific heat C ⌘ @"/@T , and (c)
the entropy S for J?/J = �1/11 > (J?/J)c. Dashed and
solid lines in (a) are obtained through the cubic and the basis
spline interpolation of the QMC data, respectively. The wider
lines in (b) correspond to the numerical derivative of the basis
spline functions of ". The thinner solid lines in the inset of

(b) are the fits to C

photon

= a3⇡2

15c3
T

3.

from a high-temperature local-moment regime with the
entropy of the order of log 2 to a classical Coulomb liq-
uid or CSI regime where the entropy gradually decays
to the spin ice plateau S

P

as shown in Fig. 2 (c). On
further cooling across T

QSI

, the specific heat C shows
an upturn, gradually releasing the Pauling entropy, in-
dicating that the spin ice is melt by quantum fluctu-
ations [6] and the system crosses over to a quantum
Coulomb liquid or QSI regime. The lowest-energy ex-
citations of the quantum Coulomb liquid are linearly dis-
persive “photons”, which describe a gauge-charge-0 har-
monic oscillator mediating coupled transverse and lon-
gitudinal spin fluctuations [3]. Assuming the dispersion

Y. Kato and S. Onoda, arXiv:1411.1981v1

J?/J = �1/11

T^3 at low-T ⇒ photons

spin-ice entropy

cf. Banerjee et al. Phys. Rev. Lett. 100, 047208 (2008)
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and the sti↵ness ⇢S are both finite. The blue dots are ex-
tracted from Ref. [5]. The dashed lines indicate the crossover
temperatures estimated from the position of the broad peaks
in specific heat curves.

successive crossovers and a single first-order phase transi-
tion shown with dashed and a solid lines in Fig. 1. From
a high-temperature side, the system first crosses over to
a classical Coulomb liquid or CSI regime with the en-
tropy approximating to the Pauling entropy, and then
for small enough |J?/J |, to a quantum Coulomb liquid
or QSI regime where the Pauling entropy is gradually re-
leased to zero. For J? < J?c

with J?c

/J = �0.103 [5], a
first-order phase transition occurs to an XY-ferromagnet
(XY-FM) [5].

All the numerical results presented in this Letter
are obtained with unbiased worldline QMC simulations
based on the path integral formulation in the continu-
ous imaginary time [33]. To update worldline configu-
rations, we adopt a directed-loop algorithm [34] in the
{szr} basis, with the modification previously introduced
for softcore bosonic systems to reduce the computational
cost [35]. To moderate the freezing problem often aris-
ing in frustrated systems, we employed the thermal an-
nealing, i.e., the temperature is gradually decreased in
the simulations. We performed typically ⇠10000 Monte-
Carlo sweeps for each temperature.
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from a high-temperature local-moment regime with the
entropy of the order of log 2 to a classical Coulomb liq-
uid or CSI regime where the entropy gradually decays
to the spin ice plateau S

P

as shown in Fig. 2 (c). On
further cooling across T

QSI

, the specific heat C shows
an upturn, gradually releasing the Pauling entropy, in-
dicating that the spin ice is melt by quantum fluctu-
ations [6] and the system crosses over to a quantum
Coulomb liquid or QSI regime. The lowest-energy ex-
citations of the quantum Coulomb liquid are linearly dis-
persive “photons”, which describe a gauge-charge-0 har-
monic oscillator mediating coupled transverse and lon-
gitudinal spin fluctuations [3]. Assuming the dispersion
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is this seen in simulation ?
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tropy approximating to the Pauling entropy, and then
for small enough |J?/J |, to a quantum Coulomb liquid
or QSI regime where the Pauling entropy is gradually re-
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(XY-FM) [5].

All the numerical results presented in this Letter
are obtained with unbiased worldline QMC simulations
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from a high-temperature local-moment regime with the
entropy of the order of log 2 to a classical Coulomb liq-
uid or CSI regime where the entropy gradually decays
to the spin ice plateau S

P

as shown in Fig. 2 (c). On
further cooling across T

QSI

, the specific heat C shows
an upturn, gradually releasing the Pauling entropy, in-
dicating that the spin ice is melt by quantum fluctu-
ations [6] and the system crosses over to a quantum
Coulomb liquid or QSI regime. The lowest-energy ex-
citations of the quantum Coulomb liquid are linearly dis-
persive “photons”, which describe a gauge-charge-0 har-
monic oscillator mediating coupled transverse and lon-
gitudinal spin fluctuations [3]. Assuming the dispersion
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FIG. 3: (Color online) Temperature dependence of (a) C
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the cubic spline interpolation of the QMC data in (a). The
entropy is computed from the cubic spline interpolation of the
specific heat data with T
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, where a is the
cubic lattice constant, and the two polarizations and the
four FCC primitive unit cells inside the cubic unit cell
have been taken into account. Thus for T ⌧ |J3

?/J
2|,

the energy density is derived from this density of states
as " ' a

3

⇡

2

60c

3

T 4 + const., leading to the specific heat of

“photons”, C
photon

= a

3

⇡

2

15c

3

T 3. The speed of “light”
c is estimated by fitting the QMC data of the energy
density at T/J < 0.001 as c ' (1.3 ± 0.2)ag~�1 for
J?/J = �1/11 where g ⌘ |3J3

?/(2J
2)|. This value lies

between c = (1.8± 0.1)ag~�1 for J?/J = �1/9.7 [5] and
c = (0.6± 0.1)ag~�1 in the limit of |J?/J | ! 0 [36].

The higher temperature crossover to the CSI regime
at T

CSI

⇠ 0.2J is also observed in the case of J? < J?c

,
as marked with (red) dashed line in Fig. 1. To be ex-
plicit, it is demonstrated for J?/J = �1/5 < (J?/J)c
in Fig. 3 (a). The entropy S computed from the spe-
cific heat C (Fig. 3 (b)) resembles the case of J?/J =
�1/11 > (J?/J)c, except that the plateau at the Pauling
entropy in the CSI regime is masked by the spiky peak in
C due to a ferromagnetic transition at T

c

/J = 0.124(3).

Next, we clarify the spin correlations on the disor-
dered side. Figures 4 present the energy-integrated
Z-polarized neutron-scattering cross-sections �
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(q) ⌘
�
T

(q)� �
NSF

(q) in the spin flip channel, except the nu-
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FIG. 4: (Color online) Spatial profiles of the energy-
integrated polarized magnetic neutron-scattering cross-
sections in the spin-flip channel, obtained with the QMC sim-
ulation at L = 24; (a) J?/J = �1/11 and T/J = 4, (b)
J?/J = �1/11 and T/J = 1/10, and (c) J?/J = �1/5 and
T/J = 1/5. The wave vector is given by q = (2⇡/a)(h, h, l),
and neutron spins are assumed to be polarized along Z =
(1,�1, 0)/

p
2.

clear form factor, where

�
T

(q) ⌘
X

µ,µ

0

hsz
µ qs

z

µ

0 �qi
n

b̂
µ

· b̂
µ

0 �
⇣

b̂
µ

· q̂
⌘⇣

b̂
µ

0 · q̂
⌘o

,

�
NSF

(q) ⌘
X

µ,µ

0

hsz
µ qs

z

µ

0 �qi
n

b̂
µ

·Z �
⇣

b̂
µ

· q̂
⌘

(Z · q̂)
o

⇥
n

b̂
µ

0 ·Z �
⇣

b̂
µ

0 · q̂
⌘

(Z · q̂)
o

,

sz
µq ⌘ 1

L3/2

X

R
+

szR
+

+bµ/2
eiq·(R+

+bµ/2),

with Z ⌘ (1,�1, 0) /
p
2, b̂

µ

⌘ b
µ

/|b
µ

|, and q̂ ⌘ q/q.
A broad scattering intensity along the [100] and [111]
rods appears at high temperatures T > T
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FIG. 16. (Color online) Slow, cold death of pinch points in a quantum ice. Equal-time structure factor S
yy
spin(k,t = 0) [see Eq. (90)] in

the spin-flip channel measured by Fennell et al.,9 calculated from the lattice field theory H′
U(1) [see Eq. (40)], for comparison with neutron

scattering experiments on a quantum spin ice. Results are plotted for temperatures ranging from T = 0 to 4.0 c a−1
0 , where c is the speed of

light and a0 the linear dimension of the cubic unit cell, with temperature measured in units such that h̄ = kB = 1. The pinch-point structure
observed at finite temperature is progressively “hollowed out” as the system is cooled towards its zero-temperature ground state.

Since there is also a characteristic loss of spectral weight
in S

αβ
spin(k,t = 0) for k ≈ 0, exactly the same process could

be seen in the angle integrated structure factor measured in
neutron scattering experiments on powder samples. In this
case, the intensity of scattering is given by

I (k,T ) ∝
∑

αβ

∫
d#

(
δαβ − kαkβ

k2

)
S

αβ
spin(k,t = 0). (124)

For classical spin ice, or a quantum spin ice at sufficiently high
temperature,

I (k ≈ 0,T ) ≈ const.

However, as a quantum spin ice is cooled to zero temperature,
the growing coherence of photons will manifest itself as a
progressive loss of spectral weight at small k,

I (k = 0,T ) ∼ T ,

until, for T = 0, spectral weight at k = 0 is eliminated entirely:

I (k ≈ 0,T = 0) ∝ k.

This progression is illustrated in Fig. 17.

B. Comparison with quantum Monte Carlo simulation

It is also interesting to compare the predictions of the lattice
field theory H′

U(1) [see Eq. (40)], with the results of finite-

temperature quantum Monte Carlo simulations of a quantum
charge ice described by Ht-V [aee Eq. (17)], as published by
Banerjee et al.59 Banerjee et al. performed their simulations
for hard-core bosons on a pyrochlore lattice at half-filling,
with hopping integral t = 1, and nearest-neighbor repulsion
V = 19.4, at temperatures T = 1.05g and 1.57g, where

FIG. 17. (Color online) Angle-integrated scattering intensity
I (k ≈ 0,T ) [see Eq. (124)] calculated from the lattice field theory
H′

U(1) [see Eq. (40)], for comparison with neutron scattering experi-
ments on a powder sample of a quantum spin ice. Results are plotted
for temperatures ranging from T = 0 to 1.0ca−1

0 , where c is the
speed of light and a0 the linear dimension of the cubic unit cell, with
temperature measured in units such that h̄ = kB = 1. The progressive
elimination of pinch points as the sample is cooled manifests itself as
a steady loss of scattering for |k| → 0.

075154-20

cf. O. Benton et al., Phys. Rev. B. 83, 075174 (2012) ❦

is this seen in simulation ?
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so what about Dy2Ti2O7 ?
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measurements of 
heat capacity of 

Dy2Ti2O7 allowing 
up to one week (!) 

for thermalization at 
each temperature..

c(T ) ⇠
Z 1

0
dt

✓
dQ

dt

◆
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what is the classical ground state of spin ice (in equilibrium) ?

measurements of 
heat capacity of 

Dy2Ti2O7 allowing 
up to one week (!) 

for thermalization at 
each temperature..

upturn in heat capacity below 500mK 
⇒ onset of order ?

N.B.  if the sample orders, the monopoles confine.



Texas A&M  11.3.15 585858

…long-range dipolar interactions select an 8-sublattice ordered state from among  
the spin-ice ground states

1st-neighbour exchange (FM) long-range dipolar interaction (Dy moment is µ ~ 10µB )

Hminimal = J1
X

hiji1

�z
i �

z
j (ẑi · ẑj) +D

X

i<j

✓
r1
rij

◆3

�z
i �

z
j

⇥
(ẑi · ẑj)� 3 (ẑi · rij) (ẑi · rij)

⇤

J1 = 3.70 K D = 1.24 K
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cubic antiferromagnet (CAF)

spin-ice configuration composed of ferromagnetically-polarized chains of spins 
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is this model complete ?

T. Yavorskii et al., Phys. Rev. Lett. 101, 037204 (2008)

elastic neutron 
scattering 
at 300 mK

Monte Carlo simulation  
of minimal model 

(cf Melko et al, 2001)

J1 = 3.70 K D = 1.24 K

…evidence for finite 2nd neighbour exchange : J2/D ⇡ �0.1

Monte Carlo simulation of 
model with longer-range 

exchange interactions

J1 = 3.41 K D = 1.32 K

J2 = �0.14 K J3 = 0.03 K

J2
J3c

J3d

J1
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what do need to solve ?

J2
J3c

J3d

J1

H
DSI

= H
dipolar

+H
exchange

…no adjustable parameters !

long-range dipolar interactions…

H
dipolar

= 4D
X

i<j

✓
r1
rij

◆3

[ẑi · ẑj � 3 (ẑi · r̂ij) (ẑj · r̂ij)] Szi Szj

finite-range exchange  interactions…

H
exchange

=
X

k

4Jk
X

hijik

(ẑi · ẑj) Szi Szj
N.B. 1st-neighbor exchange 
J1 gives constant energy in 

spin-ice states.
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find ground state for highly-frustrated long-range interactions,  
within a constrained manifold, in three dimensions !
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is there a simplification ?
pyrochlore lattice can be divided into two sets of chains, parallel to         and        [110] [110]

each FM chain acts like an Ising degree of freedom 

ordered states are composed of FM-polarised  
chains of alternating “in” and “out” spins 

P. McClarty et al., arXiv.1410.0451v1

H
DSI

= H
dipolar

+H
exchange

interactions between perpendicular chains vanish,  
interactions between parallel chains are exponentially screened  

H2D
Ising =

1

2

X

r,�

K� �r �r+�
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P. McClarty et al., arXiv.1410.0451v1

K�/D ⇡ 4⇡

3�
K1(⇡�)�

4⇡2�22
3�2

K2(⇡�) ⇡ �2
p
2

3

"
⇡2

✓
�2
�

◆2

��1/2 � ⇡��3/2 + · · ·
#
e�⇡�

K� =
p
2
3
D

1X

l=�1

"
(�1)l

2

3

�
�21 � 2�22 + l2

�

25/2 (�21 + �22 + l2)
5/2

+ (�1)�1
4

3

�
�21 + �22 � 2l2

�

25/2 (�21 + �22 + l2)
5/2

#

dipolar interaction between FM chains of spins separated by distance � = |(�1, �2)|

sum over infinitely-long chain

modified Bessel functions exponential decay

chains described by 2D Ising model with only short-range interactions ! 

how does this work ?
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TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03

0.01

í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

65

FMCAF

P. McClarty et al., arXiv.1410.0451v1

what states do we find ?

parameters used 
in simulations
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ferromagnet (FM)

spin-ice configuration composed of ferromagnetically-polarized chains of spins 
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TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03

0.01

í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

67

TDQ

FMCAF

P. McClarty et al., arXiv.1410.0451v1

what states do we find ?

parameters used 
in simulations



Texas A&M  11.3.15 68

tetragonal double-q state (TQD)

spin-ice configuration composed of ferromagnetically-polarized chains of spins 
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TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03

0.01

í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

69

TDQ

FMCAF

additional degeneracy 
on phase boundary 
cf. ANNNI model

P. McClarty et al., arXiv.1410.0451v1

what states do we find ?

parameters used 
in simulations
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TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03

0.01

í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

70

what might this mean for Dy2Ti2O7 ?
parameters from Yavorskii et al. put 

Dy2Ti2O7 in CAF state…

D = 1.32 K J1 = 3.41 K

J2 = �0.14 K J3 = 0.03 K

Dy2Ti2O7

P. McClarty et al., arXiv.1410.0451v1
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warning !
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what might this mean for Dy2Ti2O7 ?

…but this parameterization should be  
regarded as under-constrained, and  

ground state is very sensitive to  
small changes in parameters

K(1,
p
2) = �0.0227D � J2/3� J3c � J3d

K(2,0) = 0.0022D + J3d

K(0,2
p
2) = �0.0008D

parameters from Yavorskii et al. put 
Dy2Ti2O7 in CAF state…

D = 1.32 K J1 = 3.41 K

J2 = �0.14 K J3 = 0.03 K
TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03

0.01

í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

Dy2Ti2O7

P. McClarty et al., arXiv.1410.0451v1
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what happens at finite T  ?

�
�
��

�
�
��

�
��

�

�
�

�
�

�
�

�
�

�
�

����������������
�������

������
���

��

CSL

TDQ
FM CAF

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
c

J  /D

T/
D

2

results of classical Monte Carlo simulation for cluster of 128 spins

P. McClarty et al., arXiv.1410.0451v1

í2 í1 0 1 2
(h,h,0)

í3

í2

í1

0

1

2

3

(0
,0
,l)

spin 
correlations  

S(q)  
reveal classical 

spin-liquid 
with pinch-

points 
i.e. spin-ice
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0 1 2 3 4
0

1

2

3

4

5

THKL

C V
êTH

JK
-
1 m
ol
HDy
L-1 L

classical Monte Carlo simulation of

for parameters from Yavorskii et al.

H
DSI

= H
dipolar

+H
exchange

74

does this look like experiment ?

onset of 
spin-ice 

correlations

transition into CAF state

D. Pomaranski et al., Nature Physics 9, 353 (2013).
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what about slow equilibration ?

c(T ) ⇠
Z 1

0
dt

✓
dQ

dt

◆

D. Pomaranski et al., Nature Physics 9, 353 (2013).

0 1 2 3 4
0

1

2

3

4

5

THKL

C V
êTH

JK
-
1 m
ol
HDy
L-1 L

for T=340 mK, sample takes 
~ 1 week to reach equilibrium

at T=340 mK spin-ice 
configurations are dominated 

by chain-states

T=340 mK

in order to reverse all the spins in a chain, a monopole must cross the entire sample !

is this the origin of the slow equilibration ?
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so what about quantum 
tunnelling ?
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quantum dipolar spin ice

H
QDSI

= H
dipolar

+H
exchange

+H
tunnelling

favours spin-ice  
configurations; 

chain-states

selects  
between 

chain states

favours  
quantum spin 

liquid

…consider model as a function of (J2/D, g/D) for T=0

Htunnelling = �g
X

7
|�ih |+ | ih� |

Tunnelling

g

new feature is quantum tunnelling between different spin-ice configurations…
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g/
D

J2/D

0
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0.15
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FM CAF

TDQ

QSL

OZZ

78

quantum dipolar spin ice  

only a very small tunnelling g ~ 0.1 D is needed to achieve a QSL !

quantum 
spin liquid  
with 1/r4  

correlations 

(h,h,0)

í3

í2

í1

0

1

2

3

(0
,0
,l)

í2 í1 0 1 2

P. McClarty et al., arXiv.1410.0451v1

H
QDSI

= H
dipolar

+H
exchange

+H
tunneling

✓
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orthorhombic zig-zag (OZZ)

spin-ice configuration composed of ferromagnetically-polarized chains of spins 
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putting it all together… 

P. McClarty et al., arXiv.1410.0451v1
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H
QDSI

= H
dipolar

+H
exchange

+H
tunnelling

ordered phases 
composed of 

ferromagnetically-
polarised 

chains of spins
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O. Benton et al.,  
Phys. Rev. B. 83,  
075174 (2012) ❦

prediction for 
quantum spin ice  

at finite T

81

a provocative comparison !

incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.
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Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).
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neutron scattering 
on Ho2Ti2O7

T. Fennell et al,  
Science 326, 415 (2009).

prediction for 
classical spin ice 
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…in conclusion

competing ordered phases are composed of 
ferromagnetic chains of alternating spins, within 

which dipolar interactions are exponentially screened !

realistic models of spin-ice materials, with long-
range dipolar interactions, can support a 3D 
quantum spin-liquid ground state

the effect of quantum fluctuations on spin-ice is an 
interesting theoretical question, motivated by 

experiment wide range of different pyrochlore oxides
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P. McClarty et al., arXiv.1410.0451v1

ordered ground states

“spin ice can do it all”



thanks for listening !
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how good is the lattice gauge 
theory ?
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compact U(1) lattice gauge theory...

...theory is quadratic in gauge field 

H0
U(1) =

U
2

X

r2A,n

h
(r7 ⇥A)(r,n)

i2
+

1

2K
X

s2A0,m


@A(s,m)

@t

�2
+

W
2

X

s2A0,m

h
(r7 ⇥r7 ⇥A)(s,m)

i2

“µ” term 
(relevant at RK point)

tunnelling 
term

“ice” 
term

can diagonalise problem by introducing suitable photon basis : 

A(s,m) =

r
2

N

X

k

4X

�=1

s
K

!�(k)

⇥
⇣
exp [�ik · (s+ em/2)] ⌘m�(k)a�(k)

+ exp [ik · (s+ em/2)] ⌘⇤�m(k)a†�(k)
⌘

use quantum Monte Carlo simulation to validate - and parameterise - theory

how well does this work…?
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how well does this work…?
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why all these chain states ?
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1008 JAMES C. THOMPSON

It is certain that the long tail of the peak extends
far beyond the critical 6eld, so that there is extra Aux
in the sample after the sample has become normal
conducting according to the Silsbee hypothesis. London'
found a similar tail for the resistance approach to
normal resistance when the transition is made with
current alone in zero field. Theoretical description of
the paramagnetic Qux behavior beyond the peak is not
available.
In conclusion one notes the similarity in behavior of

the superconducting metals tested, and the agreement
with Meissner's theory, at least beyond the threshold.

These facts support the argument that the eGect is a
property of the intermediate state. The fast response
time coupled with the reversible nature of the transition
again emphasizes the dependence on current and field,
not on method of measurement or history of the
specimen.

ACKNOWLEDGMENTS

The author would like to acknowledge the advice and
assistance of Professor C. F. Squire and other members
of the Low Temperature Laboratory. This research was
supported by the National Science Foundation.

PH YSI CAL REVIFW VOLUM E 102, NUM B FR 4 MA V 15, 1956j

Ordering and Antiferromagnetism in Ferrites
P. W. ANDERsON

Bell TelePhorle Laboratories, 3&rray Hill, Sew Jersey
(Received January 9, 1956)

The octahedral sites in the spinel structure form one of the anomalous lattices in which it is possible to
achieve essentially perfect short-range order while maintaining a Gnite entropy. In such a lattice nearest-
neighbor forces alone can never lead to long-range order, while calculations indicate that even the long-
range Coulomb forces are only 5% eii'ective in creating long-range order. This is shown to have many
possible consequences both for antiferromagnetism in "normal" ferrites and for ordering in "inverse"
ferrites.

I. LATTICE OF OCTAHEDRAL SITES
HE ferrites are a class of oxides of iron-group
metals, many of them of technical importance as

ferromagnets, which crystallize in the spinel structure
or structures closely related to it. The ideal ferrite has
the formula ABs04 (e.g., NiFes04) and the smaller
metal ions A and 8 occupy certain interstices between
the large oxygen ions, which latter are arranged in an
approximation to the cubic close-packed structure.

F&G. 1. Photograph of a model of the spinel lattice. The dark
balls are oxygen; the tetrahedral sites are connected to their
neighboring oxygens by four diagonal bonds, the octahedral by
six vertical and horizontal ones.

The structure is shown in Fig. 1. The distortion of
the lattice of oxygen ions is such that a cell of 32 oxygens
has cubic symmetry again. There are, for each oxygen,
one interstice surrounded by an octahedron of oxygen
and two surrounded by a tetrahedron; half of the former
and only one-eighth of the latter are occupied by metal
ions. This means that in the unit cell there are 8 "tetra-
hedral sites" and 16 "octahedral sites. "
In a "normal" spinel, the 8 A ions occupy the 8 tetra-

hedral sites, the 168 ions the octahedral ones. In an
"inverse" spinel, 8 of the 8 ions occupy the tetrahedral
sites, the other 8 and the 8 A's occupying the octahedral
sites. Ferrites are known which range all the way from
purely normal to purely inverse. We are here interested
in two problems, both having to do with ordering on the
octahedral sites: (a) the problem of atomic ordering in
inverse ferrites; (b) in normal ferrites with small or no
magnetic moments on the A ions, the problem of anti-
ferromagnetic ordering of spins.
To attack these problems we need to study carefully

only the crystal lattice of the magnetic ions, particu-
larly that of the octahedral sites. The occupied tetra-
hedral sites form a diamond-type lattice, the octahedral
sites (see Fig. 2) a somewhat more complex cubic
lattice which could be generated from this tetrahedral
site lattice by displacing it through half the cube edge
and then placing an atom at the center of each bond,
' T. F. W. Barth and E. Posnjak, Z. Krist. 82, 325 (1932).

OR DERING AND ANTI FERROMAGNETISM IN FERRITES ioii

(E;„t„);„=—0.0206(qg —qg) /a,
leading to a total energy

Et.t =—1.001 (qr—q2) '/a

(Sb)

(6)

in accordance with reference i. The most unfavorable
case is that of all lines "in phase, " which has an
' Not in the structure of reference 7, but in all others, one finds

hexagons of alternating A and B, in general a number of order i7
of them. These may be rotated through 60' without changing
short-range order. These two operations (sliding lines and turning
hexagons) probably generate all possible structures.' E. Madelung, Physik. Z. 19, 524 (1918).

two of the possible sets of 100 planes these lines of the
reference 7 ordered structure are alternating ABBE
etc. ; they also have a particular relationship to each
other (lines of the same 100 plane "in phase, " i.e.,
A closest to A and 8 to 8). It is easily seen, however,
that any structure made up from a set of 011 and 011
alternating lines having any relative phase whatever is
one of the short-range ordered structures for x=~.
These do not make up all short-range ordered struc-
tures, but only a set of 2~~ of them, since there
remains only the freedom to choose one 100 plane of the
lattice arbitrarily. ' The Coulomb energies of this set
of structures can be quite accurately calculated by the
original Madelung method. '
In the Madelung method, one divides the lattice into

neutral lines of atoms and calculates both the self-
energy and the potential at external points of these
lines. This potential falls off rapidly with distance,
making it easy to sum up the interactions of the lines
with each other to rather good accuracy. In the present
case the method is particularly suitable because the
lines in successive planes do not interact, since they
cross each other exactly half-way between the two
kinds of charges. Thus it is only next-nearest neighbor-
ing lines which interact; third nearest again do not and
further neighbors can be neglected.
The self-energy of ordering of the lines is, for order-

ing of charges qr and q~ and on the same basis (per
molecule, i.e., pair of octahedral sites) as reference 1,

E„it=—L(q,—q,)'/2d7 ln2
(4)=—0.9802 (qr—q2) '/a.

The potential caused by an alternating line at a distance
nd directly opposite one of the positive atoms of the
line can be written, to three-6gure accuracy,

p.,n——(4/d)E o(ez-). (Sa)

Each line has 6 next-neighbor lines with which it can
interact, two at m= 2 in its own 100 plane and four at
e=v3 in the next-neighbor plane. At most four can be
(on the average) opposite in sign; the most favorable
case is that in which these are all the m=&3 lines, which
happens to be the order of reference 7 (Fig, 3). One can
show by adding up expressions of the form (Sa) that
the additional energy is then

I TOP LAY ER
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FIc. 3. The Verwey-ordered structure on the octahedral sites
(projected on 100 plane).

energy of (E;„„),, =+0.0310(qr—q2)'/a, (7)
with a total of —0.9492. All of the 2~' structures it is
possible to make out of alternating lines lie between
these limits and thus within S% of the minimum; one
suspects that actually the remainder also lie primarily
in this range.
The total ordering energy (6) is of order of magni-

tude 2—3 ev, i.e., & 10"K.The extra energy to be gained
by long-range order is, however, of order a few percent
of this or 500—1000 degrees K. This may be still further
reduced by polarization screening eGects, so that the
transition temperature 100'K for Fe304 is not sur-
prising. "However, it seems certain that Fe304 will be
short-range ordered far above the transition tempera-
ture. In fact the observed entropy change in the transi-
tion has been found to be little more than 0.3E." per
mole of octahedral sites rather than the R(ln2) =0.69R
to be expected in a transition from complete disorder to
complete order, in rough agreement with Eq. (2).Long-
range ordering on the octahedral sites is observed in no
other 38204 inverse ferrite, although the normal vs
inverse ordering, with its only slightly larger motivation
in Coulomb energy, often occurs. This fact is probably
explained by the above considerations: that the energy
to be gained by long- as opposed to short-range ordering
is very small, while the entropy change is still large. (We
appeal here to the qualitative relationship T, rc AN/As. )
Thus the transition temperatures are too low and the
ions are not mobile enough to permit ordering.
There does exist one proven case of atomic ordering
"J.H. Van Santen, Philips Research Repts. 5, 282 (1950),

has shown that Coulomb and other long-range effects should in
any case tend to create short- rather than long-range order and to
lower transition temperatures. It is however not clear whether
our considerations are logically independent of Van Santen's, so
that we do not rely on his effect."J.E. Kunzler (private communication).

“In the Madelung method, one divides the 
lattice into neutral lines of atoms […]  

In the present case… only next-nearest 
neighbouring lines interact”.

Verway proposal for charge-order in Fe3O4 : 
ice-like state state composed of alternating lines 

of charge

i.e. charge-ice states with composed of alternating  
chains have the lowest Coulomb energy….
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what’s the connection ?
within the “dumbbell” picture, an alternating  
chain of spins…

where Qa denotes the total magnetic charge at site a in the diamond
lattice, and rab is the distance between two sites. The finite ‘self-
energy’ u0/2 is required to reproduce the net nearest-neighbour inter-
action correctly. Equation (2)—which is derived in detail in the
Supplementary Information—is equivalent to the dipolar energy
equation (1), up to corrections that are small everywhere, and vanish
with distance at least as fast as 1/r5.

We consider first the ground states of the system. The total energy
is minimized if each diamond lattice site is net neutral, that is, we
must orient the dumbbells so that Qa 5 0 on each site. But this is just
the above-mentioned ice rule, as illustrated in Fig. 2. Thus, one of the
most remarkable features of spin ice follows directly from the dumb-
bell model: the measured low-T entropy agrees with the Pauling
entropy (which follows from the short-distance ice rules), even
though the dipolar interactions are long-range.

We now turn to the excited states. Naively, the most elementary
excitation involves inverting a single dipole / dumbbell to generate a

local net dipole moment 2m. However, this is misleading in a crucial
sense. The inverted dumbbell in fact corresponds to two adjacent
sites with net magnetic charge Qa 5 6qm 5 62m/ad—a nearest-
neighbour monopole–antimonopole pair. As shown in Fig. 2e, the
monopoles can be separated from one another without further viola-
tions of local neutrality by flipping a chain of adjacent dumbbells. A
pair of monopoles separated by a distance r experiences a Coulombic
interaction, {m0q2

m

!
4prð Þ, mediated by monopolar magnetic fields,

see Fig. 3.
This interaction is indeed magnetic, hence the presence of the

vacuum permeability m0, and not 1/e0, the inverse of the vacuum
permittivity. It takes only a finite energy to separate the monopoles
to infinity (that is, they are deconfined), and so they are the true
elementary excitations of the system: the local dipolar excitation
fractionalizes.

By taking the pictures from the dumbbell representation seriously,
we may be thought somehow to be introducing monopoles where
there were none to begin with. In general, it is of course well known
that a string of dipoles arranged head to tail realizes a monopole–
antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
dipoles remain bounded as its length grows, that is, the relevant string
tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
come equipped with vacua (ground states) filled with magnetic
dipoles, are more promising. However, even here a dipole string is
not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
confined.

The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and any magnetic charge q must exhibit the
relationship eq 5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD 5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
contrast, the string soup characteristic of spin ice at low temperature

a b

c

e

d

Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an applied magnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.
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Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q2

m

!
4prð Þ (equation (2); solid line) with a direct numerical

evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
monopole separation.
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C. Castelnovo et al., Nature 451, 42 (2007)

“dumbbell” picture of spin ice…

…magnetic dipoles (spins)  
expressed in terms of magnetic charge 

…becomes an  
alternating chain of (magnetic) charges : 

same strategy works here ! 
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each chain acts like an Ising 
degree of freedom

99

P. McClarty et al., arXiv.1410.0451v1
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�3 (ẑi · r̂ij) (ẑj · r̂ij)] Szi Szj
H

exchange

=
X

k

4Jk
X

hijik
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how does this work ?

FM

two sets of   
chains // [110]
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P. McClarty et al., arXiv.1410.0451v1
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dipolar interaction between FM chains of spins separated by distance � = |(�1, �2)|

sum over infinitely-long chain

modified Bessel functions exponential decay

chains described by 2D Ising model with only short-range interactions ! 

how does this work ?
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TDQ

FMCAF

K(2,0) /D

K(1,¥2) /D

í0.03 í0.02 í0.01 0.01 0.02 0.03
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í0.01

J2/D=0 J2/D=í0.1J3c=J3d=0

í0.02

K(2,0)

K(1,¥2)

101

TDQ

FMCAF

additional degeneracy 
on phase boundary 
cf. ANNNI model

P. McClarty et al., arXiv.1410.0451v1

what states do we find ?

parameters used 
in simulations
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how good is the chain picture ?
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limits of the chain picture ?

(J2+3J3c)/D

J 3
d/D

CAF

FM

TDQ

0 0.05�0.05�0.1
�0.04

�0.02

0

0.02

non-chain

H
DSI

= H
dipolar

+H
exchange

J2
J3c

J3d

J1

what happens if we include 
further-neighbor exchange ?

N.B. within spin-ice states 
J3c is equivalent to J2 /3 small incursion of 

non-chain states  
for J3d < -0.02

Je↵ = J2 + 3J3c

P. McClarty et al., arXiv.1410.0451v1

numerical search of ground states for 128-site cluster
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equivalence of J2 and J3c

J2
J3c

J3d

J1

�J2/3 +J2/3

+J2/3

�J2/3 �J2/3

�J2/3�J2/3 �J2/3

+J2/3+J2/3

+J2/3 +J2/3

(a) (b)
�J2/3 +J2/3

+J2/3

�J2/3 �J2/3

�J2/3�J2/3 �J2/3

+J2/3+J2/3

+J2/3 +J2/3

(a) (b)

Ea = J3c +
2

3
(J2 + 3J3c) Eb = J3c �

2

3
(J2 + 3J3c)

Je↵ = J2 + 3J3c

P. McClarty et al., arXiv.1410.0451v1

consider a pair of tetrahedra sharing a single common spin, both with  
spin configurations obeying the ice rules

16 possible states, falling into two types :

energy difference determined by combination of parameters : 


