Home    /    Academics    /    Current Undergraduate Students    /    How to Study Physics

How to Study Physics

“How to Study Physics” by David R. Hubin
and Charles Riddell, was published by the Learning Skills Center, Univ. of Texas
at Austin, in 1977. This revision is by Lawrence C. Shepley, Physics Dept.,
Univ. of Texas, Austin, TX 78712. (He gratefully acknowledges the advice of
Leslie Dickie, John Abbott College, Quebec; Kal Kallison, Learning Skills
Center, UT Austin; and John Trimble, English Department, UT Austin.)
Please feel free to browse Larry Shepley’s homepage: http://wwwrel.ph.utexas.edu/Members/larry/index.html,
and please do send him your
questions and comments
on this document. Version of 7 October 1997.

You, like many students, may view college level physics as difficult.
You, again like many students, may seem overwhelmed by new terms and equations.
You may not have had extensive experience with problem-solving and may get lost
when trying to apply information from your textbook and classes to an actual
physics problem. We hope this pamphlet will help!

It’s designed to help you stay out of the difficulties that come when
you think small and get too involved in memorizing formulas or other specific
details without understanding the underlying principles. It will guide you in
understanding how to apply specific knowledge to the problems, how to start, how
to seek help, how to check your answer. In short, it will help you develop the
study skills that are important not just in physics but in all of your courses.


Getting an Overview

Effective Participation in a Physics Class

Reading Your Physics Textbook

Problem Solving in Physics

Examples of the Application of the Problem-Solving

Effective Test Preparation

Weekly Flow Chart for Studying Physics


Getting an Overview

It’s important to recognize that physics is a problem-solving discipline. Your physics teacher will stress major
themes and principles, and one major goal is that you, the student, will be able
to apply these principles to understand and solve problems. You should
focus on this fact, that in a physics course, you are expected to solve

An overview of your course can help you organize your efforts
and increase your efficiency. To understand and retain data or formulas, you
should see the underlying principles and connecting themes. It is almost
inevitable that you will sometimes forget a formula, and an understanding of the
underlying principle can help you generate the formula for yourself.

Take these steps to getting an overview early in the term so that all
subsequent material can be integrated into your overview:

  1. Examine the course outline (first day handout or syllabus) carefully, and
    read the official description of the course in the University Catalog. Look
    for underlying themes or a pattern on which the course is developed and how
    this course fits in with your other courses.
  2. Preview the textbook:
    1. Read the introduction and table of contents.
    2. Read any notes to the student (or teacher) that are included and the preface.
    3. Check the course outline to see what chapters are assigned and which are
      omitted. If they are not assigned in the same order as in the table of
      contents, can you see a reason for your teacher’s decision to alter the
      order of presentation?
  3. As you preview the course from this perspective early in the term, look
    for important themes and principles. Glance at some of the problems. How are
    important themes illustrated in these problems?

Effective Participation in a Physics Class

It’s important that you be well prepared for class in order to use its potential fully for
integrating the course material. To prepare for the class, you should do the

Prior to each class:

  1. Check the course outline or reading assignment to see what will be
    covered. Prepare by briefly previewing the sections of the textbook
    that apply to the subjects to be covered. This preview will improve your
    ability to follow the class, for you will have seen the new terminology and
    will recognize signposts that will help integrate the classes into an overall
  2. Read the introduction and the summary of the relevant chapter and look at
    the section headings and subheadings. Try to formulate questions in your mind
    about the subjects to be covered. This question-formulating helps you
    manipulate and therefore better understand the material.
  3. Examine the drawings and pictures. Try to determine what principles they
  4. Make notes of new words, new units of measure, statements of general laws,
    and other new concepts.
  5. Do not underline or highlight the text, since you do not yet know
    what will be emphasized by the instructor.
  6. Right before the beginning of class, check your notes from the last class.
    Reading your notes will prepare you to listen to the new physics class as part
    of an integrated course and will help you to see the broad development of

During class:

  1. Come to the class on time and stay till the very end. Often
    teachers give helpful hints in the first and last minutes of the lecture.
    Unfortunately, these times are when a lot of people are not listening.
  2. Take good notes. It’s helpful to draw up a set of
    abbreviations and use them consistently in taking notes. Keep a list of
    them for later reference. Leave ample margins for later comments and for
    questions or write on only one side so that you can use the opposite side for
    comments and questions (see After Class, below).
  3. When you copy drawings, completeness is worth more than careful
    artwork. You should not only copy what is on the board but also record
    important points that the teacher makes orally about the diagram.
  4. If you get behind in your note-taking, leave a space in your notes
    and go on. You can fill in your notes later with the help of a classmate or
    your textbook.
  5. Ask questions. Don’t be embarrassed to ask your teacher questions.
    Many teachers depend on feedback from students to help them set a proper pace
    for the class. And of course it can happen that the teacher does not explain a
    step he or she takes, or even makes a mistake when writing something on the

After class:

  1. Immediately after class, or as soon as possible, review and edit
    your notes. You need not rewrite them. Rather, you should look for important
    ideas and relationships among major topics. Summarize these in the margin or
    on the opposite side if you’ve taken notes only on one side, and at this time
    you may want to add an outline to your notes. Also, this would be a good time
    to integrate notes from your textbook into your lecture notes; then you will
    have one set of integrated notes to study by.
  2. As you review your notes, certain questions may come to mind. Leave
    space for recording questions, and then either ask the teacher or even better,
    try to answer these questions for yourself with your friends and with the help
    of the text.

Reading Your Physics Textbook

Reading the text and solving homework problems is a cycle: Questions lead to answers that lead back to more
questions. An entire chapter will often be devoted to the consequences of a
single basic principle. You should look for these basic principles. These Laws
of Nature give order to the physicists’ view of the universe. Moreover, nearly
all of the problems that you will be faced with in a physics course can be
analyzed by means of one or more of these laws.

When looking for relationships among topics, you may note that in many
instances a specific problem is first analyzed in great detail. Then the setting
of the problem is generalized into more abstract results. When such
generalizations are made, you should refer back to the case that was previously
cited and make sure that you understand how the general theory applies to the
specific problem. Then see if you can think of other problems to which that
general principle applies. Some suggestions for your physics reading:

  1. Make use of the preview that you did prior to the class. Again,
    quickly look at the major points of the chapter. Think back to the points
    stressed in class and any questions you might have written down.
  2. Read the homework problems first. If specific homework problems
    have not yet been assigned, select several and look these over. Critically
    assess what principles seem to be most significant in the assigned chapter.
    Based upon your brief review of the class and your examination of the
    problems, try to generate questions in your mind that you want the chapter to
  3. Read actively with questions in mind. A passive approach to reading
    physics wastes your time. Read with a pencil and paper beside the book to jot
    down questions and notes. If you find that you are not reading actively, once
    again take a look at the problems and the lecture notes. Read to learn, not to
    cover material.
  4. Stop periodically and pointedly recall the material that you have
    read. It is a good idea to repeat material aloud and especially to add notes
    from the textbook into the margins of your class notes.
  5. During your reading you will notice sections, equations, or ideas that
    apply directly to assigned problems. After you have read such a section, stop
    and analyze its application to a homework problem. The interplay of
    reading and problem solving is part of the cycle of question ➞ answer
    ➞ question. It helps you gain insights that are not possible by reading
    alone, even careful reading alone. Passive reading is simply following the
    chain of thought in the text. Active reading also involves exploring the
    possibilities of what is being read. By actively combining the questions that
    are inherent in problem solving with your reading, you enhance both your
    concentration while reading and your ability to recall and to apply the

Problem Solving in Physics

You may now be like many students a novice problem solver. The goal of this section is to help you become an expert
problem solver. Effective, expert problem solving involves answering five questions:

  • What’s the problem about?
  • What am I asked to find?
  • What information am I to use? What principles apply?
  • What do I know about similar situations?
  • How can I go about applying the information to solve the problem?
  • Does my solution make sense?

You, the expert, will decide, “this is an energy problem,” or, “this is a
Newton 2 problem.” A novice is more likely to decide, “this is a pulley
problem,” or, “this is a baseball problem.” The novice concentrates on the
surface features of the problem while you concentrate on the underlying
principle. You, an expert problem solver, will answer these questions, play
around (briefly) with the problem, and make drawings and sketches (either in
your mind, or even better, on paper) before writing down formulas and plugging
in numbers. A novice problem solver, on the other hand, will try to write down
equations and plug in numbers as soon as possible. A novice will make many more
mistakes than you will when you become an expert.

In a physics course it’s important to remember a couple of things about
physicists and physics professors:

  • A physicist seeks those problems that can be modeled or represented by a
    picture or diagram. Almost any problem you encounter in a physics
    course can be described with a drawing. Such a drawing often contains or
    suggests the solution to the problem.
  • A physicist seeks to find unifying principles that can be expressed
    mathematically and that can be applied to broad classes of physical
    situations. Your physics text book contains many specific formulas, but you
    must understand the broader Laws of Nature in order to grasp the general
    overview of physics. This broad understanding is vital if you are to solve
    problems that may include several different principles and that may use
    several different formulas. Virtually all specific formulas in physics are
    combinations of basic laws.

General outline of how to approach a physics problem:

  1. Read the problem. Look up the meanings of any terms that you do not
    know. Answer for yourself the question, “What’s this about?” Make sure you
    understand what is being asked, what the question is. It is very helpful if
    you express the problem in your own words or if you tell a friend what the
    problem is about.
  2. Make a drawing of the problem. Even a poor drawing can be helpful,
    but for a truly good drawing include the following:
  1. Give a title that identifies the quantity you are seeking in the
    problem or that describes the problem.
  2. Label the drawing, including the parameters or variables on which
    the solution depends and that are given in the problem. Write down the given
    values of these parameters on the drawing.
  3. Label any unknown parameters that must be calculated along the
    way or obtained from the text in order to find the desired solution.
  4. Always give the units of measure for all quantities in the
    problem. If the drawing is a graph, be sure to give both the units
    and the scale of the axes.
  5. Include on the drawing information that is assumed and not given
    in the problem (such as g, the value of the acceleration due to gravity),
    and whether air resistance and friction are neglected.
  • Establish which general principle relates the given parameters to
    the quantity that you are seeking. Usually your picture will suggest the
    correct techniques and formulas. At times it may be necessary to obtain
    further information from your textbook or notes before the proper formulas can
    be chosen. It often happens that further information is needed when the
    problem has a solution that must be calculated indirectly from the given
    information. If further information is needed or if intermediate quantities
    must be computed, it is here that they are often identified.
  • Draw a second picture that identifies the coordinate system and
    origin that will be used in relating the data to the equations. In some
    situations this second picture may be a graph, free body diagram, or vector
    diagram rather than a picture of a physical situation.
  • Even an expert will often use the concrete method of working a
    problem. In this method you do the calculation using the given values from the
    start, so that the algebra gives numerical values at each intermediate step on
    the way to the final solution. The disadvantage of this method is that
    because of the large number of numerical calculations involved, mistakes are
    likely, and so you should take special care with significant figures. However
    this method has the advantage that you can see, at every step of the
    way, how the problem is progressing. It also is more direct and often makes it
    easier to locate a mistake if you do make one.
  • As an expert, you will more and more use the formal method of
    working a problem. In this method, you calculate the solution by doing as much
    as possible without using specific numbers. In other words, do as much of the
    algebra as you can before substituting the specific given values of the data.
    In long and complicated problems terms may cancel or expressions simplify. Our
    advice: gain experience in problem solving by substituting the numbers when
    you start physics, but gradually adopt the formal approach as you become more
    confident; many people adopt a compromise approach where they substitute some
    values but retain others as symbols (for example, “g” for the acceleration due
    to gravity).
  • Criticize your solution: Ask yourself, “Does it make sense?”
    Compare your solution to any available examples or to previous problems you
    have done. Often you can check yourself by doing an approximate calculation.
    Many times a calculation error will result in an answer that is obviously
    wrong. Be sure to check the units of your solution to see that they are
    appropriate. This examination will develop your physical intuition about the
    correctness of solutions, and this intuition will be very valuable for later
    problems and on exams.

    An important thing to remember in working physics problems is that by
    showing all of your work you can much more easily locate and correct
    mistakes. You will also find it easier to read the problems when you prepare
    for exams if you show all your work.

  • In an examination, you may have to do problems under a strict time
    limitation. Therefore, when you are finished with a homework problem, practice
    doing it again faster, in order to build up your speed and your confidence.
  • When you have completed a problem, you should be able, at some later
    time, to read the solution and to understand it without referring to the text.
    You should therefore write up the problem so as to include a description
    of what is wanted, the principle you have applied, and the steps
    you have taken. If, when you read your own answer to the problem, you come to a
    step that you do not understand, then you have either omitted a step that is
    necessary to the logical development of the solution, or you need to put down
    more extensive notes in your write-up to remind you of the reasons for each

    It takes more time to write careful and complete solutions to homework
    problems. Writing down what you are doing and thinking slows you down, but more
    important it makes you behave more like an expert. You will be well paid
    back by the assurance that you are not overlooking essential information. These
    careful write-ups will provide excellent review material for exam preparation.

    Examples of the Application of the Problem-Solving Principles

    Sample Problem #1:

    This problem is stated and the solution written down as you would work it out for homework.

    In 1947 Bob Feller, former Cleveland pitcher, threw a baseball
    across the plate at 98.6 mph or 44.1 m/s. For many years this was the fastest
    pitch ever measured. If Bob had thrown the pitch straight up, how high would
    it have gone?

    1. What does the problem ask for, and what is given? Answer: The speed of the
      baseball is given, and what is wanted is the height that the ball would reach
      if it were thrown straight up with the given initial speed. You should double
      check that whoever wrote the problem correctly calculated that 98.6 miles/hr
      is equal to 44.1 m/s. You should state explicitly, in words, that you will use
      the 44.1 m/s figure and that you will assume the baseball is thrown from an
      initial height of zero (ground level). You should also state explicitly what
      value of g you will use, for example, g = 9.81 m/s2. You should
      also state that you assume that air resistance can be neglected. Since you
      don’t know the mass of the baseball, say that you don’t (you won’t need it,
    2. Make a drawing:
    3. The general principles to be applied here are those of uniformly
      accelerated motion. In this case, the initial velocity vo decreases
      linearly in time because of the gravitational acceleration. The maximum height
      ym occurs at the time tm when the velocity reaches zero.
      The average velocity during from t = 0 to t = tm is the average of
      the initial velocity v = vo and the final velocity v = 0, or half
      the initial velocity.
    4. Make a second drawing. In this case, try a graph of velocity as a function
      of time:
    5. Notice that the graph is fairly accurate: You can approximate the value of
      g as 10 m/s2, so that the velocity decreases to zero in about 4.5
      s. Therefore, even before you use your calculator, you have a good idea of
      about the value of tm.

    6. The concrete method can now be applied: An initial velocity of 44.1 m/s
      will decrease at the rate of 9.81 m/s2 to zero in a time
      tm given by

      tm = 44.1 / 9.81 = 4.4954 s .

      During that time, the average velocity is vav = 44.1 / 2 =
      22.05 m/s. Therefore the height is given by

      ym = vav tm = 99.12 =
      99.1 m .

      Notice that for all “internal” calculations, more than the correct
      number of significant figures were kept; only when the final answer was
      obtained was it put into the correct number of significant figures, in this
      case three.

    7. To do this problem in a formal method, use the formula for distance y as a
      function of t if the acceleration a is constant. Do not substitute numbers,
      but work only with symbols until the very end:

      y = yo + vo t + a
      t2 / 2 ,

      where yo = 0 is the initial position, vo = 44.1 m/s
      is the initial velocity, and a = – g = – 9.81 m/s2 is the constant
      acceleration. However, do not use the numerical figures at this point in the
      calculation. The maximum value of y is when its derivative is zero; the time
      tm of zero derivative is given by:

      dy/dt = vo + a tm = 0 –>
      tm = – vo / a .

      The maximum height ym is given by putting this value of
      tm into the equation for y:

      ym = yo + vo ( –
      vo / a ) + a ( – vo / a )2 / 2 =
      yo – vo2 / 2a .

      Now substitute: yo = 0, vo = 44.1, a = – 9.81. The
      result is

      ym = 0 + 0.5 (44.1)2 / 9.81
      = 99.1 m .

    8. Look over this problem and ask yourself if the answer makes sense. After
      all, throwing a ball almost 100 m in the air is basically impossible in
      practice, but Bob Feller did have a very fast fast ball pitch!

      There is another matter: If this same problem had been given in a chapter
      dealing with conservation of energy, you should not solve it as outlined
      above. Instead, you should calculate what the initial and final kinetic energy
      KE and potential energy PE are in order to find the total energy. Here, the
      initial PE is zero, and the initial KE is m vo2 / 2. The
      final PE is m g ym and the final KE is zero. Equate the initial KE
      to the final PE to see that the unknown mass m cancels from both sides of the
      equation. You can then solve for ym, and of course you will get the
      same answer as before but in a more sophisticated manner.

    9. To prepare for an exam, look over this problem and ask yourself how you
      can solve it as quickly as possible. You may be more comfortable with the
      concrete approach or with the formal approach; practice will tell. On an
      actual exam, you might not have time for a complete drawing or a complete
      listing of principles. By working this problem a couple of times, even after
      you’ve gotten the answer once, you will become very familiar with it. Even
      better, explain the problem to a friend of yours, and that way you really will
      be an expert!

    Sample Problem #2:

    Again, this problem is stated and the solution
    written down as you would work it out for homework. As in Sample Problem #1, we
    go through the eight steps of the general outline.

    A one kilogram block rests on a plane inclined at 27o
    to the horizontal. The coefficient of friction between the block and the plane
    is 0.19. Find the acceleration of the block down the plane.

    1. The problem asks for the acceleration, not the position of the block nor
      how long it takes to go down the plane nor anything else. No mention is made
      of the difference between static or kinetic coefficients of friction, so
      assume they are the same. The mass is given, but you will eventually find that
      it doesn’t matter what the mass is. (If the mass had not been given, that
      would be an indication that it doesn’t matter, but even in that case you may
      find it easier to assume a value for the mass in order to guide your thoughts
      as you do the problem.)
    2. Here is the first picture. Note that the angle is labeled θ, and the coefficient of friction
      is labeled μ. In
      addition, the use of m for the mass and a|| for the
      acceleration down the plane are defined in the picture.
    3. There are two general principles that apply here. The first is Newton’s
      Second Law:

      F = m a,

      where F is the net force, a vector, and a is acceleration,
      another vector; the two vectors are in the same direction. The mass m will
      eventually be found not to make any difference, and in that case, you might be
      tempted to write this law as a = F / m, since a is what
      you want to find. However, the easiest way to remember Newton’s Second Law is
      F = m a, and so that is the law to work with.

    4. The second principle is that the frictional force is proportional to
      the normal force (the component of the force on the block due to the plane
      that is perpendicular to the plane). The frictional force is along the plane
      and always opposes the motion. Since the block is initially at rest but will
      accelerate down the plane, the frictional force will be up along the plane.
      The coefficient of friction, which is used in this proportionality relation,
      is .

    5. It is now time to draw the second picture. It helps to redraw the first
      picture and add information to it. In this case a vector diagram is drawn and
      various forces are defined.

      Note that in the vector diagram, the block has been replaced by a dot at
      the center of the vectors. The relevant forces are drawn in (all except the
      net force). Even the value assumed for the gravitational acceleration has been
      included. Some effort has been made to draw them to scale: The normal force is
      drawn equal in magnitude and opposite in direction to the component of the
      gravity force that is perpendicular to the plane. Also, the friction force has
      been drawn in parallel to the plane and opposing the motion; it has been drawn
      in smaller than the normal force. The angles of the normal and parallel forces
      have been carefully drawn in relation to the inclined plane. This sub-drawing
      has a title and labels, as all drawings should.

    6. We will do this problem using the formal approach, leaving the concrete
      method for a check (see below).
    7. Now for calculation using the formal approach, where you work with algebra
      and symbols rather than with numbers. First state in words what you are doing,
      and then write down the equation:
      • Magnitude of gravity force = weight = m g.
      • Resolve gravity force into normal component and parallel component whose
        magnitudes are:

        FG|| = m g sin θ and FGN = m g
        cos θ.

      • The magnitude of the normal force due to the plane is equal in magnitude
        (but the direction is opposite) to the magnitude of the normal component of
        the gravity force:

        FN = m g cos θ.

      • The frictional force opposes the motion, and its magnitude is equal to
        the coefficient of friction times the normal plane force:

        Ff = μ m g cos θ .

      • The net force (which is along the plane) is the difference between the
        parallel component of the gravitational force and the friction force; its
        magnitude is:

        F = m g sin θ – μ m g cos θ.

      • The acceleration is net force over mass:

        a|| = g sin θ – μ g cos θ = g ( sin θ – μ cos θ).

      • The numerical answer is (given to two significant figures since the
        given numbers have two):

        a = (9.8 m/s2) (sin 27o
        0.19 cos 27o) = (9.8) (0.454 – 0.19 x 0.891) = 2.79 = 2.8

    8. When you look over this answer to see if it makes sense, try doing the
      problem by substituting numbers in at each step (the concrete approach). The
      weight of a kilogram, for example is 9.8 N. The normal (perpendicular to the
      plane) component of the gravitational force is 9.8 times cos 27o or
      8.73 N. This makes sense, for if the angle were very small, the normal
      component of the gravitational force would be almost equal to 9.8 itself.
      Notice that although the final answer should be given to two significant
      figures, you should keep three in these intermediate calculations.
    9. The parallel component of the gravitational force is 9.8 sin 27o
      = 4.45 N. The normal force due to the plane is equal in magnitude to the
      gravitational normal force (but opposite in direction), and so the frictional
      force is 0.19 times 8.73 or 1.66 N. The net force is down the plane and equal
      to the difference 4.45 – 1.66 = 2.79 N. Divide this value by 1 kg to get the
      acceleration 2.79 m/s2 (which is rounded off to 2.8

      Again examine your solution. It says that the block does accelerate down
      the plane because the final answer is positive. The acceleration is less than
      g, again a reasonable result. Notice that if the angle were more than
      27o, then its sine would be larger and its cosine smaller, so the
      acceleration would be greater. If the angle were less than 27o then
      the opposite would be true, and the acceleration, as calculated above, could
      become negative. But a negative value for acceleration would be wrong, because
      that would say that the block would accelerate up the plane because the
      frictional force dominates, and that is impossible. Instead, if the
      calculation had produced a negative value for a, you would have had to change
      the solution to a = 0, meaning that the frictional force was enough to prevent

    10. Now anticipate how you’d do this problem on an exam. Is the concrete
      approach faster and easier for you? Or would you be more comfortable using the
      formal approach on an exam? It is a good idea to practice doing this problem
      when you study for an exam, if you think a similar problem will be asked.

    Effective Test Preparation

    If you have followed an active approach to study similar to the one suggested in this handout, your preparation
    for exams will not be overly difficult. If you haven’t been very active in
    studying, your preparation will be somewhat harder, but the same principles
    still apply. Always remember: Physics courses, and therefore physics exams,
    involve problem solving. Hence, your approach to studying for exams
    should stress problem solving.

    Here are some principles:

    • In the week prior to the exam, follow the three steps below. These
      steps should give you a reasonably good idea of what has been stressed and on
      what you can expect to be tested.
    • Review your notes and recheck the course outline. Your goal at
      this point is to make sure you know what has been emphasized.
    • Reread your solutions to the homework problems. Remember that
      these solutions, if complete, will note underlying principles or laws.
    • Review the assigned chapters. Once again, your purpose in this
      early stage of exam preparation is to make sure you know what topics or
      principles have been emphasized.
  • From this rapid overview, generate a list of themes,
    principles, and types of problems that you expect to be covered.
    If samples of previous exams are available, look them over, also, but do not
    assume that only previous types of problems will be included. It definitely
    helps to work with others at this stage.
  • Review actively. Don’t be satisfied with simple recognition of a
    principle. Aim for actual knowledge that you will be able to recall and to use
    in a test situation. Try to look at all the possible ways that a principle can
    be applied. Again, it helps to work with others and to explain things to
    others (and have them explain things to you).

    For example: If velocity and acceleration principles have been emphasized
    in the course, look over all of your homework problems to see if they
    illustrate these principles, even partially. Then if you also can anticipate
    an emphasis on friction and inertia, once again review all of your homework
    problems to see if they illustrate those principles.

  • Effective examination preparation involves an interaction among
    homework problems, the classes, your notes and the text. Review actively,
    including self-tests in which you create your own problems which involve a
    combination of principles. You need to be sure that you can work problems
    without referring to your notes or to the textbook. Practice doing problems
    using both the concrete and the formal approaches, to see which you are more
    comfortable with.
  • Remember that exams will include a variety of different problems.
    You want to look back on an exam and say, “I know how to do friction problems
    so well, that even though they were asked in a weird way, I could recognize
    them and solve them.”

  • Weekly Flow Chart for Studying Physics


    These tips are based on a list “17 Tips that UT Seniors
    Wish They’d Known as Freshmen” by Dr. John Trimble, a professor in the English
    Department. He is a member of The University of Texas’s Academy of Distinguished
    Professors. These tips have been adapted to fit physics courses, but they are
    good tips for any university student.

    1. Get to know your professor. Go to his or her office hours early in the
      semester and often. Get to know your TAs. Go to their office hours early in
      the semester and often. UT Austin has faculty and graduate students who are
      among the best in the world; get to know them.
    2. As soon as you can, trade names and phone numbers with at least two
      classmates. Don’t ask the professor what you missed if you happen to miss
      class; ask your classmates.
    3. Make sure you are enrolled in the course you think you are enrolled in.
      Correct any enrollment mistakes as soon as you can.
    4. Read and study your course policy statement (the first day handout or the
      syllabus). It is a legal contract!
    5. Buy and use an appointment book.
    6. Keep a notebook of unfamiliar words and phrases. Look them up or ask what
      they mean. Buy and use a good dictionary.
    7. If you haven’t yet learned to use a computer, do so. If you don’t have a
      good calculator, which you know how to use easily, buy one and learn to use
      it. A particular calculator may be required for class; be sure you get the
      right one. Study its manual and practice using it until you can do so quickly
      and accurately.
    8. Learn to touch-type. If you hunt-and-peck, you will be at a disadvantage.
      Learn either through a computer program or at Austin Community College.
    9. Bring two calculators to each exam or one calculator and extra batteries.
      Bring your text book to each exam. Bring extra paper to each exam. Bring two
      pencils and two pens to each exam. Bring two blue books if required. Ask which
      of these you are allowed to use, but of course don’t use the items that aren’t
    10. Go to each and every class session. Be punctual. Look professional. Don’t
      disturb the class by talking. But do ask questions!
    11. Exercise at least every other day.
    12. When you write papers, do so in at least two editing stages, with a few
      hours or a day or two between drafts. Type your papers. When you write up
      homework problems, do so neatly and carefully. If possible, ask your
      professor, TA, or the grader for feedback before you turn in the final version
      of an assignment.
    13. Understand that you are reinventing yourself. You are defining what and
      who you are for many years to come (you may want to reinvent yourself
      later, at 30 or 40), so be careful about how you go about it.
    14. Hang out with the smartest, most studious people you can find. Watch how
      they work. Eventually people will be watching you; help them in developing
      good study habits.
    15. Take the teacher, not the course. Shop for the best teachers by asking
      older students who they are and by reading the Course/Instructor student
      evaluations at the UGL’s Reserve Desk. Try to meet prospective teachers before
      enrollment. Keep a “Best Teachers/Best Courses” notebook.
    16. Assume responsibility for your own education. Exercise initiative. Learn
      to love the whole process of education, not just the end-product.
    17. Dr. Trimble’s seven reasons for going to college:
      • To meet a lot of interesting people, some of whom will become lifelong
      • To gain an enlarged view of an enlarged world.
      • To learn better how to learn. (Most of what you later learn, you’ll
        teach yourself.)
      • To reinvent yourself — that is, to discover and explore more of
        yourself than you normally could at home.
      • To acquire at least a dilettante’s knowledge about a lot of different
        things, since being informed beats the hell out of being ignorant.
      • To learn how to handle adult responsibilities while still enjoying a
        semi-protected environment.
      • To identify and explore career options.